
Advanced Features in QuickCalc

First of all, QuickCalc BASIC is BASIC!

It is designed to bring the experience and ease-of-use of the BASIC programming
language to you in an easy-to-use Windows environment. If you have programmed in
BASIC before, this is BASIC, and you should have practically nothing to learn. If you
never programmed a computer before, QuickCalc is the place to start.

However, this version of BASIC adds a whole lot of features that were never part of the
original BASIC language, and does so in a way that integrates seamlessly and allows you
to access these new features within the structure of the BASIC language.

What Are The “Advanced Features” in QuickCalc BASIC?

Note: “Advanced” doesn’t mean they require advanced programming skills. Many of

these features make it EASIER to program in BASIC. Some require more
advanced skills , and some just make it more FUN.

It is assumed that you are familiar with BASIC programming before using these
“enhancements”.

The following features are summarized in the document “Functions, Statements and
Commands.” Other documents mentioned provide more detailed information,

1. Graphing. This is probably QuickCalc’s most powerful tool. With just a few
simple statements, you can easily produce publishable-quality graphs of data
you produce in your BASIC program, plus charts, shapes, text, colors, and a
whole lot more. Refer to “Beginning Graphics”, “Intermediate Graphics” and
“Advanced Graphics”.

2. Long (high-precision) Numbers. How about 1 million digits of precision? All

right, let’s start with fifty. You can choose how precise you want it to be. And all
the functions (trig, powers, roots, logarithms, exponentials, pi, etc.) are there.

Note: This document contains detailed descriptions of certain functions of
QuickCalc BASIC:

• Indirect Name Reference
• INPUTDIALOG and UPDATEDIALOG
• The SORT statement and Sorting Arrays

Please scroll down to those sections if you are searching for those topics.

Long numbers may be mixed right in with regular numbers whenever you need or
want the extra precision. Refer to “Working With Long Numbers” for more.

3. Date/Time Variables. Dates and times (from microseconds to billions of years)

are kept in “DATETIME” variables, which you can create, print out, graph, etc.
Leap years and Daylight Saving Time are handled for you, but you can over-ride
the time zone and daylight saving time rules, if you want. Refer to “Working
With Dates and Times.”

4. User-Defined Functions which Invoke Subroutines. The original BASIC

limited a user-defined function to single statement. QuickCalc expands that to
support subroutines, e.g.,

DEF user-function (x, y, z …) = GOSUB statement-number.

The user-defined function invokes the subroutine, which returns a value (with the
RETURN statement). Refer to the document “User-Defined Functions”.

5. Indirect Name Reference. With this programming tool, you can refer to a

variable at execution time with a string (variable or expression) containing the
name of the variable. This feature is described in detail later in this document.

6. Print Formatting Enhancements. QuickCalc provides many new tools to

format data for printing. These include:

• C-type formats (for you C and C++ programmers)
• "###.cc" takes “integer” cents and formats it as dollars.cents
• "MAX" which will show the maximum precision in a DOUBLE floating-

point number
• "ENGxxx” [Engineering notation] allows you to format numbers as

m-amp, K-ohm, etc., with 3 significant figures (decimal points aligned).
(See “Introduction to QuickCalc”)

• Formatting long (LONGMATH) numbers. (See “Working With Long
Numbers”).

• Ability to PRINT to a string variable, and use FIELD statements to format a
string variable.

• You can override the default print format.
• All format specifications also work with STR$.

7. Statement Numbers are Optional. You only need them to “label” targets of
GOTO, GOSUB, and DATA statements referred to by RESTORE. Statement
numbers don’t have to be in sequence.

8. INPUTDIALOG and UPDATEDIALOG. These two (nearly identical)

statements/functions make it easy to create a “Windows-style” dialog for entering
multiple data values. This powerful tool is described in detail later in this
document.

9. MESSAGEBOX. Another “Windows-style” function that shows you a message

and lets you choose what to do next.

10. SELECT Dialog. This function allows you to select an item from a string-array.
A dialog opens up with a scroll-down list, from which you can make a selection.

11. SPAWN statement. Allows you to launch virtually any program, web URL,

document, etc., from QuickCalc.

12. “Mouse-Clickable” Shapes. When drawing shapes on a graph, you can make
a shape “Clickable”, that is, when the user clicks on it, you can take action
depending on which shape was clicked. See the document “Advanced Graphics”.

13. BROWSEINPUTFILE$ and BROWSEOUTPUTFILE$ These functions let

you use the Windows file-browsing dialog to search for files to read or create,
rather than having to type them in manually.

14. SERIAL and BINARY Files. With Serial files you can communicate with

micro-controllers like Arduino over USB or Serial ports. With Binary files you
can read and write non-text data (See “Working With Files”)

15. Degrees and Radians. You can choose to work all trigonometric functions

(and graphic shapes) in either degrees or radians, whichever is more comfortable
for you. The accuracy is the same.

16. Append and Include. These statements allow you to piece together code

segments or subroutines at run time. Include copies another file into your
program at the spot of the Include statement. Append adds the file to the end of
the program. They facilitate writing common subroutines and definitions for use
in multiple programs.

17. Help Documents and Quick Reference Booklet. QuickCalc BASIC

includes over 200 pages of documentation and references. These are organized
into PDF files and accessible from the HELP screen, so you can look up
information while you are running QuickCalc. And all the information (or just
the portion of interest) may be printed. The Quick Reference booklet may be
printed and kept close at hand while you are writing BASIC programs.

18. The Log File. Everything that is written to the QuickCalc screen is also written

to a log file. This makes it easy to copy and/or print the output of your programs.

19. Long Hexadecimal Numbers. You can convert long decimal numbers back
and forth to long hexadecimal numbers of virtually any length (the HEXCONVERT
function), and the hex numbers also may contain a [hexa-]decimal point and data
to its right. (See “Number Representation, Assignment and Conversion”)

20. Debugging Functions. No program is perfect, especially the first time you

run it. To find out why, QuickCalc provides a lot if different debugging functions
(See “Debugging”). You can trace or step through your program. In addition,
there are over 300 “error messages”, designed to show you what went wrong and
where. There are also timing functions to find out why your program is running
slower than you would like.

21. Relaxed Number Assignment Rules. Some BASIC interpreters are very

strict about numbers and variables. With QuickCalc, you can use a string variable
where a number is required, provided the string represents a number. Number
constants and data entered are kept as “number strings” and converted when
needed, so that no precision is lost. (See “Number Representation, Assignment
and Conversion”)

22. BEEP can play any .WAV File. Usually, the Beep statement does just that,

beep!. Now you can use it to play music or give you audible cues. How about
sound clips from movies (“Use the Force, Luke.”)

23. SORTING Arrays. QuickCalc has a SORT statement to quickly sort arrays and

sub-arrays by multiple keys. This feature is described in detail later in this
document.

24. “You Can Program Your Own Computer”. This is the title of a book I

wrote for the Kindle, available from Amazon (99 cents). It introduces the non-
programmer to BASIC in an easy-to-read book.

25. Online Library of Sample Programs. These sample programs, which you

may copy and use freely, illustrate the features of QuickCalc BASIC, and
demonstrate how they are used. Many are useful applications in their own right.

Indirect Name Reference

(This is an advanced function of QuickCalc BASIC).

Sometimes the variable or array name you want to reference is not known at the
time the program is written, or it may change during program execution, or be
different depending on how a subroutine is called.

A variable or array name may be specified at execution time as the contents of a
string or string expression. Use the function @(string-expression). The string
expression must contain the name of a variable or array. The resulting variable
will be used in the statement.

Example:
a = 45
s$ = "a"
b = @(s$)

The indirect reference @(s$) looks up the current value of s$ which is “a”.
The variable with the name a is then looked up. It contains the value 45,
which is then assigned to b.

Indirect name references may be used anywhere a name is referenced – in
arithmetic expressions, subscripts, function parameters, function names, statement
names, dimension statements, etc. They may not be used in DATA statements or
any other statement which is processed before the program is run.

The string expression must evaluate to a BASIC variable name. The referenced
name does not have to be previously defined. It will simply be substituted into
the statement as the statement is executed. The resulting statement, after the
substitution, must be valid or errors will occur.

If the string expression contains characters not allowed in variable names, the
invalid characters and all following characters will be ignored. For example:

"abc d" becomes "abc" (space is not allowed)
"a1/2" becomes "a1" (slash is not allowed)
" abc" becomes null string, which is invalid and causes an error.

Examples of substitution: (assume s$ contains “abc”, b$ contains “sin”)

DIM @(s$)(10,10) becomes DIM abc(10,10)
@(s$) = @(s$) + 1 becomes abc = abc + 1
d = @(b$) (x) becomes d = sin (x)
e = @(s$+b$) becomes e = abcsin
f = SQR (@(s$)) becomes f = SQR (abc)
g=@(b$) (@(s$)) becomes g=SIN (abc)

A good example of indirect name referencing appears when working with
complex variables. Since each function must return two variables (real and
imaginary), an easy way to accomplish this is to pass the name of the array
containing the complex variable you want returned. This way the subroutine may
indirectly place the results in both variables. A simple example:

real = 0: imaginary = 1
DIM a (2), b (2), c (2) // complex variables
DEF complex_add (s1$, s2$, s3$) = GOSUB 500
a (real) = 3: a (imaginary) = 4
b (real) = 6: b (imaginary) = 2
xx = complex_add ("a", " b", " c")
PRINT c (real), c (imaginary)
END

500 // Subroutine to add two complex numbers
@(s3$)(real) = @(s1$)(real) + @(s2$)(real)
@(s3$)(imaginary) = @(s1$)(imaginary) + @(s2$)(imaginary)
RETURN 0 // return code not used in this case.

See the document “User-Defined Functions” for more examples of complex
variable functions.

As another example, you could place the names of any number of variables in
an appropriate-size [string] array and pass the name of that array to a subroutine.
The subroutine could reference the variables indirectly and pass back any number
of results. This effectively removes the limits on the number of parameters for
user-defined functions.

Dialog Input (INPUTDIALOG and UPDATEDIALOG)

QuickCalc BASIC gives you the ability to generate input dialog boxes to facilitate
entering your data. These dialogs are under BASIC program control, and do not require
any Windows programming knowledge on your part.

These dialog boxes size themselves automatically and give you control over the format of
the dialog box. You can

• set the location and size of each field,
• place a prompt above each field,
• Have more than one field on each line (row)
• Generate your own buttons.

There are two new functions to support this: INPUTDIALOG and UPDATEDIALOG.

UPDATEDIALOG is identical to INPUTDIALOG, except that the edit fields are pre-
loaded with the current values of their associated variables. This allows you to
change them without typing them all in again.

Each one has a statement form and a function form. These are described below.

Format

Statement form:
INPUTDIALOG [title ;] variable-name-1, variable-name-2, …
UPDATEDIALOG [title ;] variable-name-1, variable-name-2, …

Note: If used, the title must be followed by a semicolon.

Function form:

return-code = INPUTDIALOG ([title ,] string-array)
return-code = UPDATEDIALOG ([title ,] string-array)

title is a title (or “caption”) for the dialog box. It is optional. It must be
a string variable or quoted string constant. If you don’t specify it,
the title will be “Enter Data:”.

string-array Specifies the name of the string array, which is a one- or two-

dimensional array containing the data to define the dialog box and
the variables you want to enter. This form gives you maximum
control over the appearance [layout] and contents of the dialog
box, the variables to be entered and prompts for each field.

Note: The string array must have been dimensioned and loaded

with the definitions before using it here. Normally, you
would use DIM string-array (n ,5) where n is at least as
large as the number of fields you want to define.

variable-name-1, -2, etc.

These are used with the statement form. This is the “quick and
dirty” way to use INPUTDIALOG and UPDATEDIALOG, since it can
be done with a single program line. You simply list the names of
the variables you want to enter (maximum of 6). The variable
names should not be in quotes and not in parentheses. This is
similar to the INPUT statement, but looks better and is more user-
friendly.

The names may be any valid variables (i.e.. string variables,
numeric variables, field variables, array entries, etc.) The name of
each variable will appear in the dialog box as a prompt for each
field, so give the variables meaningful names.

Note: The statement form of INPUTDIALOG or UPDATEDIALOG is

really intended for program development and debugging.

If someone else it going to be using the program, it is much
more intuitive (and professional-looking) to use the
function form with a string-array.

Also, the statement form provides no return code. If the
user presses ENTER or the “OK” button, the variables are
updated and the program continues. If they press ESC or
click the [X] the variables are not updated and the program
is terminated.

The INPUTDIALOG Array

The array is a string array.
Each row of the array defines one field (or edit box) in the dialog.

The format of each row of the array is

variable-name, prompt, row, start-column, width

variable-name is a string constant containing the name of the

variable you want to receive the data you enter into
this field. If it is a number (1-99) it means you want
a button (see below).

prompt is a string constant containing the text to display

above the edit box, prompting the user what data is
required in that field.

Note: If the prompt string contains commas or

colons or significant leading blanks, it must
be enclosed in quotes. Do not embed special
characters (like line-feed) in the prompt
string.

Note: The prompt string is displayed above the

edit box and has the same width. Make sure
your prompt string is not too long.

Note: If you want to use, as a prompt, the contents

of a string variable at run time, assign it to
the proper element in the array, e.g.,
dialog_array$ (0, 1) = s$, overriding the
prompt that you set when you initialized the
array.

row is the row in the dialog where you want this field to
appear. Rows are numbered 0 through 5, starting
at the top. If two fields are on the same row and
they overlap, the second one (which should be to
the right of the first) will cause the first one to be
shortened.

start-column (Expressed as a percentage of the complete row).

This defines where the edit field starts in the row. It
ranges from 0 to 95, where 0 is the left side of the
dialog. If this field overlaps another, it must start at
least 7% higher than the start of the other field.

width (Expressed as a percentage of the complete row).

This defines the width of the field. It ranges from 5
to 100, where 100 is the full width of the row. If
you specify 0 it assumes you mean 100. If the
width extends beyond the right side of the dialog it
will be shortened to fit.

Note: You don’t need to specify the width unless

you want a field which is shorter then the
distance to the next field or the right side of
the dialog. You can set all the widths to 0 or
100 if you like.

Note: row, start-column and width are numeric values, but must

be stored in the string array.

 If they are number strings, they can be assigned
directly, e.g., dialog_array$ (4, 2) =
3,

They can be read into the array, e.g.,
READ dialog_array$ (4, 2).

If they are in numeric variables, they must be
converted to strings, as follows:

dialog_array$ (4, 2) = STR$ (FIX
(row))

Note: Don’t confuse the row in the dialog with the row in the array
which defines it.

Note: Edit fields should be specified in the following order:

First (leftmost) entry in first row
Next entry in first row

…
Last (rightmost) entry in first row
First (leftmost) entry in second row
(etc.)

Example (Statement Form)

INPUTDIALOG "Please enter the following:" ; height, width, name$

This produces the following dialog:

It can’t get much easier than that, and this statement may even be entered from the
command line.

However, this form has its limitations:

• You can’t set the widths of the fields (each one is the full width).
• The names of the variables are used as the prompts (e.g., name$).
• You are limited to a maximum of six variables.
• You can’t create your own buttons.
• There is no return code.

The function form is much more flexible (but this one is “quick and dirty”, and still
looks a lot better then the INPUT statement).

Example (Function Form)

DIM dialog_array$ (7, 5)
DATA name$, Name, 0, 0, 100
DATA address$, Address, 1, 0, 100
DATA apt$, Apt, 1, 80, 100
DATA city$, City, 2, 0, 100
DATA state$, State, 2, 65, 100
DATA zip$, Zip, 2, 75, 100
DATA phone$, Phone, 3, 0, 100

FOR i = 0 to 6
FOR j = 0 to 4
READ dialog_array$ (i, j) // load up the array
NEXT
NEXT

rc = INPUTDIALOG ("Address Book Entry"; dialog_array$)

This produces the dialog box shown below:

Type the data into each field, then press “tab” to advance to the next field.
After the data is entered, click the “OK” button (or press Enter). The variables
referred to in the array will be set to the data that you typed in. The return code
will be 0.

If you click on the [X] button, or press ESC, the dialog will be closed. The return
code will be -1.

Note: The “OK” button is automatically generated, unless you specify
buttons of your own (see below);

Using Different Size Arrays

Normally, the array is 5 wide, as specified above. Narrower arrays may be used,
with fewer options, as described below:

If array is 4 wide: (no width specified)

Each field on a line stops 2 % before the specified start of the next field.
The last field on a line takes up the remaining width on the line.

If Array is 3 wide: (no start position or width)

All fields start at 0 % and go full width. Make sure not to place 2 fields
on the same line. This limits you to a maximum of 6 fields.

If array is 2 wide, (no line number, start position or width)

All fields start at 0% and go full width. Each field is on a separate
[consecutive] line, starting with line 0.

If array is 1 wide: (no prompt, line number, start position or width)

The variable name is used as the prompt. Printed as specified (i.e., case).

Note: A 1-wide array means one dimensioned (n, 1) or simply (n). Both

are handled the same.

Overlapping Fields

If fields are specified (on the same line) which overlap, the program will attempt
to adjust the sizes so the overlap is corrected.

Each field on a given line takes precedence over the one before it.

So when they overlap, the first one is shortened, so that it ends at 2%
before that start of the next one.

If the width of the first field is now less than 5% it will cause an error.

If a field extends beyond the right side of the window, it will be shortened to fit.

If the result is less than 5%, it will cause an error.

Order of the Fields

Fields should be specified in the array in increasing row order, the first row
being 0.

Within a row, fields should be specified in increasing column [percentage] value,
[left-to-right].

Columns specified in the wrong order may give undesirable results.

Tab stops are set in the order the fields appear in the array. Adding a field out of
order will cause the tab key to jump to the wrong field.

It is OK to skip a row if you want to leave some empty space. The row skipped
still counts as one of the six.

Generating Your Own Buttons (Function mode)

The program normally places an “OK” button on the line below the last row of the
dialog. You can override that and generate your own buttons.

Simply replace the variable-name field with a number (from 1 to 99). Each
button must have a different number.

When you specify your own button[s], the default “OK” button is not generated.

The string you specified in the prompt for that field will appear on the button.
Make sure the prompt is short enough to fit on the button.

The same rules for row, start column, width and overlapping apply for buttons.
You may place buttons anywhere on the dialog, including row 6.

Clicking on any button will close the dialog and return to the program (after checking
numeric fields). Action is the same no matter which button is clicked.

The return code will be the number (which you specified as the variable-name) of the
button you clicked. You can test the return code and perform the appropriate action.

If you clicked on [X] or pressed ESC, the return code will be -1.
If you pressed ENTER, the return code will be 0.

A Simple Example of Buttons:

DIM dialog_array$ (4, 5)
DATA name$, Name, 0, 0, 100
DATA address$, Address, 1, 0, 100
DATA 1 , Delete, 2, 0, 100
DATA 2 , Save, 2, 52, 100

FOR i = 0 to 3
FOR j = 0 to 4

READ dialog_array$ (i, j) // load up the array
NEXT
NEXT

rc = INPUTDIALOG ("Address Book Entry", dialog_array$)

This produces the following dialog:

The return code will be 1 if you clicked “Delete” and 2 if you clicked “Save”

Data Entry Rules:

Data entered into the fields must match the format of the target variable. No editing is
done on the data as it is entered.

When the dialog is closed (by pressing ENTER or a button, numeric fields
(DOUBLE and LONGMATH) are checked for validity. If they are not valid
numeric data, a message box pops up letting you know, and prompting you to re-
enter the data. You may then re-enter (or edit) the number and try again. You
can’t leave the dialog until all fields are OK, unless you cancel out of it (ESC or
[X]).

Note: If you cancel out of a dialog after re-editing a numeric value, the variables

higher up in the dialog array will have already been stored.

Input variables may be strings, FIELD variables, numeric (DOUBLE or LONGMATH)
variables, string array elements, or numeric (DOUBLE or LONGMATH) array elements.

For numeric variables,

What you type in must be convertible into a number. If not, it will
generate an error message when it tries to assign the value to the
numeric variable. It will then allow you to re-type it.

If you leave the field blank for a numeric variable, the variable will be set
to zero.

If you enter a quoted string (not recommended), it must contain at least
one digit and no invalid characters (including blanks).

Note: Some precision may be lost when you update a number, even if

you don’t change it. DOUBLE variables are converted into a string
format for display/edit, then converted back to DOUBLE.
LONGMATH numbers will be shortened to about 244 digits (+ sign
+ decimal-pt + “E+nnnnnnn” = 255) for editing. Even if you don’t
change it, the result will be the new length. If the number is < 244
digits, there will be no loss of precision.

Note: You can, of course, take numeric data in as string data and convert

it later. If you enter a number into a string variable, it will be
saved as a string which you may convert later, assign it to a
numeric variable, or do further tests on it.

For string variables:

String data entered is subject to same rules as for the INPUT statement.

Strings containing new-line or carriage-return characters must be
enclosed in quotes and use \n and \r in place of those characters.
If the string is in quotes, then you must also substitute \" for a
quote, \\ for a single backslash, \+ and \- for superscript and
subscript codes (see the TEXT statement).

Exception [different than INPUT]: strings with embedded

blanks or starting with numbers, but not containing
the above characters, do not need quotes.

Leading and trailing blanks are stripped off, unless the string is in
quotes. For FIELD variables, trailing blanks are always removed.

If the string you enter starts with a quote, it must also end with one.

If a string begins with a quote and that quote is considered to be
part of the string, then the preceding rule applies, i.e., enclose
string in quotes and use \" for the leading quote (e.g., for "abc enter
"\"abc"). A quote or backslash in the middle of an unquoted string
is OK.

Quotes will be stripped off and substitutions made when the strings
are stored.

The maximum length string you may enter is 255 minus the added
characters from the substitutions and the leading and trailing
quotes. This shouldn’t be a problem in normal use.

You may enter very long strings into the edit fields [they will scroll
horizontally], however they will be truncated to 255 if assigned to
a string, and to the field length if assigned to a FIELD variable.

Using FIELD variables in INPUTDIALOG and UPDATEDIALOG.

Since FIELD variables can be used as variables in INPUTDIALOG and
UPDATEDIALOG, this provides an easy way to update RANDOM files.
Define a dialog referencing the fields in your RANDOM file record, GET
the record, and do the UPDATEDIALOG. When the dialog is exited, all the
updated fields are already in place in the file buffer, ready for you to do a
PUT. You can, of course, do further checks on the data before writing it,
and do another UPDATEDIALOG with the same or different fields. Some
fields may be from one FIELD statement and some from another, or a
different source. There is a lot of flexibility here.

(See the sample program “Address Book” for an example of using
INPUTDIALOG, UPDATEDIALOG, Buttons, FIELD statements, and
RANDOM files.)

The SORT Function and Sorting Arrays

New to version 2.4.1 is the SORT statement. This gives you a very quick and
simple way to sort the rows of an array by different keys (columns in that row).

Features

• We can sort arrays which are DOUBLE, String, or LONGMATH.
• Arrays may be of any legal order and size (subject to memory limitations).
• Sort can be Ascending or Descending.
• We can ignore case [default] or consider it when comparing strings.
• We can sort a sub-array (defined by a subset of the indices).
• We can sort by something other than the first entry in the column.
• Sorts are, by default, stable.

The SORT Statement:

SORT array-name [(index-1, index-2, …)]
[, count=number-of-rows-to-sort]
[, keycol1=primary-sort-column]
[, keycol2=seconday-sort-column]
[, keycol3=tertiary-sort-column]
[, DESCENDING]
[, CASE]
[, UNSTABLE]

array-name is the array you want to sort. Don’t specify indices (or subscripts)
unless you want to sort on a sub-array (see discussion below).

(index-1, index-2, …)

If you want to treat a lower-order portion of an array as a “sub-array” and
sort on that, specify the higher-order indices that define that sub-array.

For example, if the array is dimensioned (4,2,10,40) and you specify
array-name (2, 1), you will sort the sub-array beginning at array-name
(2,1), which is an array or order 2 (10 rows by 40 columns). The rest of
array-name is left alone.

count specifies the number of rows to sort. It must be an integer. If count is 0,
(or not specified) the number or rows sorted will be the highest dimension
[i.e. the number of rows] of the array (or sub-array). If count is greater
than the highest dimension, it will be set to the highest dimension.

Note: If the array is not filled, the empty elements will be zero or null
strings, which will usually come out first in the sort. Count allows
you to sort on just the entries which have been used.

keycol1, keycol2, keycol3

represent the columns in the row which are used as the sort keys. Each
may be from 0 to 1 less than the second-highest dimension (“column”),
e.g., a valid index.

If the keycol parameters are not specified, the sort will be on column 0, or
the first entry in the row. If there are no columns (order=1), the sort will
be on the only entry in the row, and these parameters will be ignored.

Note: You may specify none, 1, 2 or 3 key columns. The second and

third are used to “break a tie” when the first keys compare equal.

Note: If you specify keycol2, you must also specify keycol1.

If you specify keycol3, you must also specify keycol2.

DESCENDING sorts in reverse order – highest to lowest. (Default is ascending).

Note: You can’t sort by one keycol ascending and another descending in
the same sort.

CASE causes upper and lower case letters to be sorted differently. The default is

to ignore case differences. This parameter is only used for string arrays.

Note: When CASE is specified, all capital letters will sort before any
lower-case letters, i.e., “Z” sorts before “a” (ASCII order).

UNSTABLE causes an “unstable sort” to be performed.

By default, the sort is “stable”. This means that the original order is
preserved in rows which compare equal. A stable sort takes about
10% more time than an unstable sort, however, the difference is
typically less than 1 millisecond for 1000 rows. If you don’t care
about preserving order for equal keys and want that extra
millisecond back, specify “UNSTABLE”.

For an example of a BASIC program using SORT, see the sample
program “sort demo.txt”.

Notes on Rows and Columns:

The whole concept of rows and column breaks down when the order of the array
is greater then 3. It is difficult to even imagine a 4- or 5-dimensional array. In

this discussion, “row” will be used for the highest order index or the array (or
sub-array), and “column” for the 2nd highest index.

Notes on sub-array sorting:

A one-dimensional array has an order of 1. It has a single index to specify the
entry number [row].

A one-dimensional array is just a list. It has rows, but not columns – it
cannot have a sub-array. Each row contains one entry. The sort is done
on that one entry.

A two-dimensional array has an order of 2. It has two indices to specify row
and column.

Think of it as a table, with rows and columns. The highest-order index
specifies the row.

Each row can have several columns, and each column has one entry.
Therefore, each row can be thought of as a sub-array with an order of 1.

If the entire array is being sorted (no indices provided) then the sort key
for each row defaults to the entry in the first column (column 0) for that
row. If a key column is provided, the sort key[s] is/are taken from
column[s] keycoln (relative to 0) for that row.

Example: If the columns represent last name, first name, …, then

SORT array-name, keycol1=1

will sort on column 1 (relative to 0), i.e., first name.

If we want to sort a sub-array, i.e., a single row in this case, we specify

SORT array-name (row-number).

This means that only that row will be sorted. In this case, all the columns
of that row will be sorted. No other rows in the array will be changed.

Note: Since the array order is 2, the sub-array has an order of 1, which

means that a keycol cannot be used here, as each column (of the
sub-array) contains only one entry.

A three-dimensional array has an order of 3. It has three indices to specify row,
column and “plane” (for want of a better word).

Each row of the array contains one or more columns and each column
contains one or more planes. Specifying (row, column, plane) completely
identifies exactly one element of the array.

If you specify a row, then that row contains all the elements beneath it. For
example, if the array is dimensioned (10, 5, 4) then each row contains 5
columns of 4 elements each, or 20 elements). When you sort by rows, all
20 elements get “moved” along with the row.

A 3-dimensional array can be made into sub-arrays in two different
ways:

(1) You can specify a single row, i.e., array-name (row-number).
In this case, the specified row becomes a two-dimensional sub-
array.

(9)
(8)
(7)
(6)
(5)
(4)
(3)
(2)
(1)
(0)

R
ow

s

(4, 0) (4, 1) (4, 2) (4, 3)
(3, 0) (3, 1) (3, 2) (3, 3)
(2, 0) (2, 1) (2, 2) (2, 3)
(1, 0) (1, 1) (1, 2) (1, 3)
(0, 0) (0, 1) (0, 2) (0, 3)

Sub-array
array-name (0)

(10 such sub-arrays)

(4, 0) (4, 1) (4, 2) (4, 3)
(3, 0) (3, 1) (3, 2) (3, 3)
(2, 0) (2, 1) (2, 2) (2, 3)
(1, 0) (1, 1) (1, 2) (1, 3)
(0, 0) (0, 1) (0, 2) (0, 3)

Sub-array
array-name (9)

You can sort the rows in the sub-array by the first entry in
each column [default] or specify a keycol to specify which
columns contain the desired sort key[s].

(2) You can specify a single row and column, i.e., array-name
(row, column). Now the plane specified by (row, column)
becomes a one-dimensional sub-array whose entries can be sorted.

(9, 0) (9, 1) (9, 2) (9, 3) (9, 4)
(8, 0) (8, 1) (8, 2) (8, 3) (8, 4)
(7, 0) (7, 1) (7, 2) (7, 3) (7, 4)
(6, 0) (6, 1) (6, 2) (6, 3) (6, 4)
(5, 0) (5, 1) (5, 2) (5, 3) (5, 4)
(4, 0) (4, 1) (4, 2) (4, 3) (4, 4)
(3, 0) (3, 1) (3, 2) (3, 3) (3, 4)
(2, 0) (2, 1) (2, 2) (2, 3) (2, 4)
(1, 0) (1, 1) (1, 2) (1, 3) (1, 4)
(0, 0) (0, 1) (0, 2) (0, 3) (0, 4)

R
ow

s

Columns

(3)
(2)
(1)
(0)

Sub-array
array-name(1,4)

(50 such sub-arrays)

(3)
(2)
(1)
(0)

Sub-array
array-name(8,3)

Note: Since the array order is 3, the sub-array has an order

of 1, which means that the keycol cannot be used
here, as each plane contains only one dimension.

Four-and Five-dimensional arrays are just extensions of the three-dimensional
concept.

Summary (for arrays and sub-arrays)

If the order is 1, you can’t make a sub-array.
If the order is 1, you can’t use a keycol.
If the keycols are omitted or zero, the sort key is
 array-name (row, 0,0,…)
If a keycol is not zero, the sort key is
 array-name (row, keycol, 0,0…), etc.
If a sub-array is desired, the number of indices supplied must be less than

the order.
If a sub-array is desired, the order of the sub-array is (order - #-of-
indices).

Example: if order = 5 and you specify array-name (n, m) [two
indices], then the sub-array has an order of 5-2 = 3.

All rows, columns, entry-numbers, etc., must be valid according to the
DIM for the array.

Stable vs Unstable Sorts

 Qsort (the sort routine provided in the Microsoft “C” library) is unstable,

i,e, duplicate items don’t necessarily retain their original sequence. Using
secondary and tertiary sort keys can help, e.g., by numbering the rows in a
particular column.

This implementation is stable. How this is accomplished will be discussed
in a technical paper. In order to make it stable, we must allocate a 1-
dimensional array which uses 4 bytes per entry (for String and
LONGMATH) or 8 (for DOUBLE). At most, this would require 8K for 1000
entries.

Note: It is theoretically possible for the sort to fail if it couldn’t

allocate the memory. If that happened [extremely
unlikely], you could try using an unstable sort.

Stable sorts typically take from 5 to 15% longer. This usually not
noticeable, since the extra overhead for a 1000 entry sort is typically about
1 millisecond (out of a total of 3 milliseconds). Perhaps that is too much
of a difference for you, or you are sorting some extremely large arrays, in
which case, you could specify “UNSTABLE”.

