

Advanced Graphic Functions

This section describes some of the more “advanced” functions which you can use to
create some more sophisticated or complicated shapes and effects. These functions are
not “simple”. You don’t need these functions to produce the basic simple graphs,
however if you wish to create some more interesting effects, you can use some of the
techniques described below.

It is assumed that you are already familiar with the topics presented in “Intermediate
Graphics”. If not, it is recommended that you read that document first.

QuickCalc graphics is designed to be easy to learn. Start with the basic stuff first. Then,
if you are brave or have a lot of time to experiment, try some of the advanced stuff
described in this section.

Advanced graphic functions include:

• Polylines
• Bezier Curves
• Smoothing and Averaging Plots and Polylines
• Connected (Complex) Shapes
• Outline Text Characters
• Selecting Shapes with the Mouse
• Deleting Shapes

Polylines

A “Polyline” is a series of connected points. It is similar to a polygon, except that
it is not a closed shape, even if it returns to its start point. It is drawn as a series
of line segments.

To draw a polyline, you provide a list of x,y points in an array, similar to the way
you do when drawing a polygon, except that you must provide all points including
the first and last. Then you issue the SHAPE POLYLINE statement, referencing the
array and the number of points in the array.

The array must be dimensioned with DIM polyarray (n ,2), where n is at least as
large as the number of points.

Example:

DIM points (3,2)
points (0,0)=20: points (0,1)= 10
points (1,0)=20: points (1,1)= 0
points (2,0)= 0: points (1,1)= 0

SHAPE POLYPOINTS=points, POLYCOUNT=3, POLYLINE

Points in a Polyline may be smoothed and/or averaged (see below).

A polyline resembles a plot of data points, but keep in mind the following
differences:

• A Plot may be sorted (x, y, or none).
• Polylines are always drawn in the order the points appear in the array.
• Plots can happen in real time, as the points are calculated.
• For Polylines, the entire array must be calculated before the polyline is

drawn.
• Polylines may be part of a Complex Connected Shape (see below) – plots

may not.

A Polyline may also resemble a Polygon, however:

• A Polygon is a closed shape. It may be filled with a color or pattern.
• A Polyline is an open figure, and cannot be filled, even if it ends at its start

point.
• A Polyline may be used as part of a Complex Connected Shape (see

below).
• A Polygon does not specify its final point, which is assumed to be the

same as its start point.
• A Polyline specifies all points, including both ends.
• When smoothing or averaging a Polyline, the end points are not changed

(see below). For Polygons, all points are smoothed or averaged.

Bezier Curves

A [cubic] Bezier curve is a smooth curved line generated by a cubic equation.
You can achieve curves of almost any shape using one or more Bezier curves.

Note: You can find out all kinds of information about Bezier curves on
the internet. I won’t attempt to describe the math involved here.

A (cubic) Bezier curve is specified by giving the endpoints (LINESTART and
LINEEND) plus two control points (CTLPT1 and CTLPT2). Think of the control
points as “attractors” which “pull” the curve in the direction of the control points.
The farther the control points are away from the line, the more the line is
distorted. (If the control points lie along the line, the result will be a straight line.)

You can experiment with different values of CTLPT1 and CTLPT2 to see which
give you the best results. The curve will always approach the end point along a
line between the end point and its associated control point. This helps you set the

tangent to the curve as it reaches the end point. Again, refer to the internet and
other literature for examples of how to set Bezier control points.

To plot a Bezier curve, specify the endpoints and control points, then issue the
SHAPE BEZIER statement.

Example:

GRAPH HEIGHT=5, WIDTH=10, EQUALSCALES
SHAPE LINESTART = (0, 0)
SHAPE CTLPT1 = (1.5, 1.5)
SHAPE CTLPT2 = (3, -1)
SHAPE LINEEND = (4, 0)
SHAPE LINECOLOR=(255, 0, 0), BEZIER

The graph looks like:

-1-1-1-1

-.5-.5-.5-.5

.5.5.5.5

1111

1.51.51.51.5

.5.5.5.5 1111 1.51.51.51.5 2222 2.52.52.52.5 3333 3.53.53.53.5 4444

You can create more complex shapes by stringing Bezier curves end-to-end.

Note: Automatic scaling includes the control points, which may result in
some unwanted white space around the curves.

Bezier curves may be used, along with lines and polylines, as parts of Complex
Connected Shapes (see below).

Smoothing and Averaging plots, polylines and polygons

A PLOT is basically a series of connected points. So is a POLYLINE. A POLYGON
is simply a polyline which closes on itself, that is, it ends back at its starting point
and defines a closed shape.

There are two ways that QuickCalc BASIC can smooth a plot:

Averaging

When you average a plot, you look at the previous and next points,
compute their average, and then move the original point in that direction.
This is done for all points except the start and end.

The effect of averaging is to lessen the extremes, or make the line less
jagged. In this way, trends become more visible. The data plotted is no
longer exact. This can be useful when looking at the performance of a
stock over time without being concerned with the daily highs and lows.

Note: Averaging works best when the distance between the points on one

axis is nearly uniform. If a bunch of points is clustered together,
averaging will not have much effect around those points.

Averaging may be used in PLOTs, POLYLINEs, and POLYGONS.

To specify averaging for PLOTs, in the PLOT statement specify
AVERAGE=n, where n may vary between 0 and 10. Zero (the default)
means no averaging; the actual points are plotted. 10 is the maximum –
each point is moved half the distance to the average of the previous and
next points.

For PLOTs, the points may be sorted or unsorted.

To specify averaging for POLYLINEs and POLYGONs, specify AVERAGE=n
in the SHAPE statement just preceding the polygon or polyline.

For POLYLINEs, the polyline may be part of a path, or stand alone.
Remember the start and end points will not be changed.

For POLYGONs, the start and end points are the same and will be
averaged like all the other points.

Note: Be sure to reset AVERAGE to 0 after using it to avoid

unintentionally propagating it to the next shape.

The following graph illustrates how a plot is affected by averaging
(the green line is the same data plotted with AVERAGE=10):

1111

2222

3333

4444

5555

1111 2222 3333 4444 5555 6666 7777 8888 9999

Smoothing

Smoothing changes the jagged line into a smooth(er) curve, or more
precisely, a series of Bezier curves.

The smoothed curve passes through all of the points in the plot (or
polyline or polygon).

Smoothing may be combined with averaging. If the points have been
changed using the AVERAGE parameter, the curve will pass through the
new [averaged] points. If you do this for a plot, place the SMOOTH and
AVERAGE parameters on the same PLOT statement, e.g.,

PLOT SMOOTH=8, AVERAGE=9, …

The tangent to the curve as it passes through each point is parallel to the
line between the previous and next points.

Smoothing may be used in PLOTs, POLYLINEs, and POLYGONS.

To specify smoothing for PLOTs, in the PLOT statement specify
SMOOTH=n.

The amount of smoothing is determined by the parameter n, where n may
be from 0 to 10. Zero (the default) produces no smoothing. 10 produces
the maximum smoothing (widest curves), while low numbers produce
very tight curves at the points. Experiment to see which you like best.

For PLOTs, the points may be sorted or unsorted.

To specify smoothing for POLYLINEs and POLYGONs, specify SMOOTH=n
in the SHAPE statement just preceding the polygon or polyline.

For POLYLINEs, the polyline may be part of a path, or stand alone.
Remember the start and end points will not be smoothed.

For POLYGONs, the start and end points are the same and will be
smoothed like all the other points. Smoothing can have rather
drastic effects on polygon shapes, like turning a rectangle into an
ellipse, a star into a flower, a pentagon into a potato, etc.

Smoothing a polygon can sometimes simplify creating a difficult
shape. The following diagram shows the result of plotting a simple
polygon with SMOOTH=10 to create an unusual shape without
having to resort to Bezier curves:

Note: If you are trying to plot a shape where some parts of it are
smoothed and others have sharp corners, just using the
SMOOTH parameter will not work. Instead, create a
complex connected shape (see “Complex Connected
Shapes”, below) where the smooth part is a polyline which
is smoothed and the other parts are figures which are not
smoothed.

An example of this would be a plot where the area under
the plot is to be filled.

Note: Be sure to reset SMOOTH to 0 after using it to avoid
unintentionally propagating it to the next shape.

The following graph illustrates the effect of smoothing a plot (the green
line is the same data plotted with SMOOTH = 8:

1111

2222

3333

4444

5555

1111 2222 3333 4444 5555 6666 7777 8888 9999

The following graph illustrates the effect of smoothing and averaging a
plot (the red line is the same data plotted with AVERAGE=10 and
SMOOTH=8):

1111

2222

3333

4444

5555

1111 2222 3333 4444 5555 6666 7777 8888 9999

The following graph shows examples of how polygons are affected by
smoothing:

RectanglesRectanglesRectanglesRectangles

SMOOTH=3SMOOTH=3SMOOTH=3SMOOTH=3 SMOOTH=7SMOOTH=7SMOOTH=7SMOOTH=7 SMOOTH=10SMOOTH=10SMOOTH=10SMOOTH=10

PolygonsPolygonsPolygonsPolygons
(Pentagon)(Pentagon)(Pentagon)(Pentagon)

SMOOTH=3SMOOTH=3SMOOTH=3SMOOTH=3 SMOOTH=7SMOOTH=7SMOOTH=7SMOOTH=7 SMOOTH=10SMOOTH=10SMOOTH=10SMOOTH=10

PolygonsPolygonsPolygonsPolygons
(Star)(Star)(Star)(Star)

SMOOTH=3SMOOTH=3SMOOTH=3SMOOTH=3 SMOOTH=7SMOOTH=7SMOOTH=7SMOOTH=7
AVERAGE=6AVERAGE=6AVERAGE=6AVERAGE=6

SMOOTH=10SMOOTH=10SMOOTH=10SMOOTH=10
AVERAGE=10AVERAGE=10AVERAGE=10AVERAGE=10

Smoothing and averaging may be used on Polylines which are part of a complex
connected shape (see below). The Polyline will be smoothed and/or averaged just
as if it were drawn as a separate figure.

Complex Connected Shapes

Sometimes, you may wish to draw a shape that is not a simple ellipse or polygon.
You may wish to create a shape that is made up of curves and lines, or has holes
cut out of it. Fonts are an example of complex shapes – the letter “B” has two
holes in it, while the letter “i” has a separate dot over it. Using Complex
Connected Shapes, you can draw virtually any shape you want.

Complex Connected Shapes may contain any other shapes. Polylines and
polygons may be smoothed and/or averaged (see above), if desired. These figures
are strung together end-to-end and finally closed (a line is drawn from the end
point to the start point) to form a closed shape. If one figure does not start where
the previous one left off, they will be connected. The final closed figure may then
be outlined, filled, or both, just like any of the other solid shapes.

You start a Complex Connected Shape by specifying the SHAPE BEGINPATH
statement. You then specify a sequence of SHAPE statements that outline the
shape you desire. These shapes will not be drawn until the entire Complex
Connected Shape is finished, at which time you specify the SHAPE ENDPATH
statement.

Note: If you include a solid shape as part of the outline, remember that solid

shapes are closed (return to their starting point). Normally, you would
specify either a series of open shapes (line, Bezier, and polylines) or a
single closed shape (like a rectangle, polygon or ellipse).

Note: Complex connected shapes may not contain other complex connected

shapes. This includes outline text shapes (see below), since they are also
complex connected shapes.

Now that you have defined the complete shape, you can cause it to be outlined
with the SHAPE STROKE statement, or outlined and filled with the SHAPE
STROKEFILL statement.

Note: Do not attempt to draw other unrelated shapes while you are
defining the complex connected shape.

The line weight, line color, fill color and/or hatch pattern are specified with the
same parameters used for other shapes (described above). The values in effect at
the time of the SHAPE STROKE or SHAPE STROKEFILL statement will be used.
You cannot have different values for different segments of the shape.

Note: If you do STROKEFILL and the current FILLTYPE=NONE, it will be treated

as a STROKE (the figure will not be filled).

A simple example is as follows:

DIM points (3,2)
GRAPH EQUALSCALES, LANDSCAPE, HSCALE=2.1
SHAPE BEGINPATH
SHAPE LINESTART=(0,0), LINEEND=(0,10), LINE
SHAPE LINESTART=(0,10), LINEEND=(20,10)
SHAPE CTLPT1=(3,13),CTLPT2=(17,13), BEZIER
points (0,0)=20: points (0,1)= 10
points (1,0)=20: points (1,1)= 0
points (2,0)= 0: points (1,1)= 0
SHAPE POLYPOINTS=points, POLYCOUNT=3, POLYLINE
SHAPE ENDPATH
SHAPE LINECOLOR=(0,0,255), FILLCOLOR=(255,0,0),FILLTYPE=SOLID
SHAPE STROKEFILL

This will produce the following:

2222

4444

6666

8888

10101010

12121212

14141414

2222 4444 6666 8888 10101010 12121212 14141414 16161616 18181818 20202020

The “complex” shape has a line on the left side, a Bezier curve on the top,
and a polyline completing the right and bottom sides. The interior is filled
with red, although it could have been filled with any color or hatch
pattern.

Multiple Closed Figures in a Complex Connected Shape

This is where it gets interesting. Suppose you want a shape which has a
“hole” in it that doesn’t get colored and shows whatever is behind it.

Many characters in fonts fit that pattern. Such a shape is created using (at
least) two figures – one inside and one outside.

To create such a shape, draw the outer figure first, then draw the inner
figure in the opposite direction. To separate the two figures so you don’t
get a line connecting them, use the statement SHAPE CLOSEFIGURE in
between them, as follows:

SHAPE BEGINPATH
… (SHAPE statements for the outer figure)
SHAPE CLOSEFIGURE
… (SHAPE statements for the inner figure)
SHAPE ENDPATH

Note: BEGINPATH, ENDPATH and CLOSEFIGURE should each be

on separate SHAPE statements.

Note: To draw a closed shape, like an ellipse, in the “opposite” direction,

use the DIRECTION=[NORMAL | REVERSE] parameter. Don’t
forget to reset the direction back after you draw the shape. An
ARC is normally drawn counter-clockwise, but can be modified
with the DIRECTION parameter.

The following is a simple example in which a circular hole is cut into a
square figure:

// hole cut in square
GRAPH EQUALSCALES,LANDSCAPE
SHAPE BEGINPATH
SHAPE FILLCOLOR= (255, 100, 100)
SHAPE CENTER= (50, 50),RADIUS=40, RECTANGLE
SHAPE CLOSEFIGURE
SHAPE RADIUS=20, DIRECTION=REVERSE, ELLIPSE
SHAPE ENDPATH
SHAPE DIRECTION=NORMAL
SHAPE STROKEFILL

10101010

20202020

30303030

40404040

50505050

60606060

70707070

80808080

90909090

10101010 20202020 30303030 40404040 50505050 60606060 70707070 80808080 90909090 100100100100 110110110110 120120120120

To create a separate (disjointed) figure, such as the dot over an “i”, you
can use the same syntax, however the second shape does not have to go in
the opposite direction.

The following is an example of a more complex shape which has a several
shapes “cut” out of the inside of it and a part outside the main figure:

degrees
dim polyarray (12,2)
graph landscape,equalscales
graph includexaxis=0,includeyaxis=0

shape
fillcolor=(0,0,255),filltype=hatch,hatch=diagcross
gosub 1000

500

end

//---
1000 // subroutine to draw complex shape
shape beginpath

// Outer figure:
shape linestart=(10,30),lineend=(10,40),line
j=1
for i = 0 to 10: // set up a zig-zag line
 polyarray (i,0) = 10+i
 polyarray (i,1) = 40+j
 if j = 1 then j = -1 else j = 1
next
shape smooth=10
shape polypoints=polyarray, polycount=11,polyline
shape smooth=0
shape linestart=(20,40),lineend=(30,40)
shape ctlpt1 =(23,44),ctlpt2 =(27,44),bezier
shape linestart=(30,40),lineend=(30,34),line

shape linestart=(30,34),lineend=(26,30)
shape ctlpt1 =(30,32),ctlpt2 =(28,30),bezier
shape linestart=(26,30),lineend=(10,30),line

shape closefigure

// Inner Figures:

// ellipse
shape rotate=30
shape center=(20,35),hradius=3,vradius=1,ellipse
shape rotate=0
shape closefigure

// rectangle
shape rotate=120
shape center=(26,38),hradius=2,vradius=1,rectangle
shape rotate=0
shape closefigure

// crescent (made from arcs)
shape rotatecenter="center",rotate=30
shape center=(14,34),radius=2.5
shape startangle=90,endangle=270,direction=normal
shape arc
shape hradius=1.2
shape startangle=270,endangle=90,direction=reverse
shape arc
shape rotate=0,direction=normal
shape closefigure

// pie segment
shape center=(25,32),radius=2
shape startangle=45,endangle=135,pie
shape closefigure

// chord
shape center=(16,36),radius=2
shape startangle=50,endangle=190,chord
shape closefigure

// Disjointed figure
shape left=12,right=20,top=44,bottom=43,rectangle

shape endpath
shape strokefill
return

In the above program, the entire complex connected shape is drawn in the
subroutine at statement number 1000. The fill color is preset before
calling the subroutine.

The inner figures are drawn with the “normal” direction because the outer
figure runs clockwise. Some of the inner shapes are rotated.

 The above program will produce the following graph:

30303030

32323232

34343434

36363636

38383838

40404040

42424242

44444444

10101010 12121212 14141414 16161616 18181818 20202020 22222222 24242424 26262626 28282828 30303030

Although there is no practical use for the above figure, it serves to
illustrate how you can generate virtually any shape that you can imagine.
Note how smoothing turned the zig-zag line into something resembling a
sine curve.

Repeating a Complex Connected Shape

Once you have created a custom shape in this way, you may want to
display it in different places on your graph. Unfortunately, once the shape
is finished, it cannot be changed.

The best way do draw the same custom shape more than once is to place it
in a user-defined function subroutine, where the starting point is a
parameter of the subroutine and all points are offsets from that location.
Other characteristics of the shape, such as its color and rotation, could also
be parameters, or else set before the subroutine is called.

Rotating a Complex Connected Shape

A Complex connected shape may be rotated like any other shape, around
any desired center of rotation. This rotation is in addition to the rotation
of individual shapes contained within the complex shape. For example, if
the complex shape contained an ellipse which was rotated to 45 degrees,
and the entire shape is also rotated 45 degrees, the ellipse would end up
rotated 90 degrees.

To rotate the complex shape, specify ROTATECENTER and ROTATE before
the SHAPE BEGINPATH. The entire complex figure will be drawn rotated
according to those parameters.

If ROTATE is not specified for the complex shape, the rotation
angle will be the value that was in effect when the SHAPE
BEGINPATH was executed.

If ROTATECENTER is not specified, or is set to “center”, the
complex shape will be rotated around the origin. It will not use the
center point of the last shape.

Individual objects inside the complex shape will have a default rotation of
zero (relative to the complex shape), and no center of rotation specified,
just like when the program started. You may specify ROTATE and
ROTATECENTER for the individual shapes, just like normal shape
drawing.

When the SHAPE ENDPATH is given, the rotation parameters are reset to
the values in effect before the BEGINPATH.

In the program above, the complex shape was drawn in a subroutine at
1000. If we insert the following lines after statement 500:

shape rotate=45,rotatecenter=(10,10)
shape fillcolor=(255,0,0),filltype=solid
gosub 1000

shape rotate=215,rotatecenter=(10,28)
shape fillcolor=(0,255,0)
gosub 1000

the entire complex shape will be redrawn at different rotations and in
different colors. Auto-scaling will re-size the graph to show all three
figures, as follows:

10101010

15151515

20202020

25252525

30303030

35353535

40404040

45454545

-10-10-10-10 -5-5-5-5 5555 10101010 15151515 20202020 25252525 30303030 35353535 40404040

Notice how the individual shapes rotated with the complex shape.

Outline Character Shapes

Some of the most interesting shapes are the characters in the scalable fonts (True
Type, Adobe Type 1, etc.) that we use all the time on the computer. These
characters are complex connected shapes made up of lines, polylines and Bezier
curves. When they are printed or displayed on the screen, they are rendered into
bitmap patterns.

QuickCalc has a function called SHAPE TEXT that allows you to draw those
character shapes just like any other shape. They can be made any size, rotated,
filled and/or outlined. All that you have to do is to specify where you want them
drawn, how large, which font, which characters, and outline and fill information,
just like any other shape. This information is provided in the usual SHAPE
statements:

SHAPE LINEWEIGHT=num-expr, thickness of line, in points
SHAPE LINECOLOR=(r, g, b), color of outlining line
SHAPE FILLTYPE=[SOLID | HATCH | NONE]
SHAPE HATCH=[HORIZONTAL | VERTICAL | CROSS | RIGHT | LEFT |

DIAGCROSS]
SHAPE FILLCOLOR=(r, g, b) fill or hatch color

To specify the character(s) to draw, use the following new parameters:

SHAPE FONT=string-expr Specifies the name of a font to be
used for this operation. This must be
an outline font (TrueType, Type 1,
etc.) installed on your computer, and
must match the font name exactly

(except for case). If there is no
match, a generic sans-serif font will
be used.

If you don’t know the names of the
installed fonts, go to the Control
Panel and select “Fonts”. Then
select View / Hide Variations.
Double-clicking on the font icon will
show you what the font looks like.
You can also use the function
CHOOSEFONT$ to select a valid font
name.

SHAPE BOLD = num-expr Specifies the weight (from 0 to 1000)
of the font used in the SHAPE TEXT
function. Default is 0, which means
use a standard or “normal” weight
for the font. 1000 is the boldest.

SHAPE ITALIC = num-expr Specifies if you want normal or italic

for the font used in the SHAPE TEXT
function. Default is 0, which means
normal. 1 means italic.

SHAPE CHARACTERS=string-expr Specifies the character or characters

you want to display (a maximum of
31). If any of these characters do not
exist in the font you selected, blanks
will be substituted. All characters in
the string will be drawn with the
same color, size, etc.

SHAPE JUSTIFY=[LEFT | CENTER | RIGHT]
 Positions the text so that it starts, is

centered about, or ends at the given
starting point. Default is LEFT.

Note: This function is not intended for large amounts of text, or for small

text. Small text does not look good when you try to outline it, and
this function is much slower than the TEXT statement. It is more
useful for larger decorative font effects and for logos.

To specify the location and size, use the parameters you would use to define a
rectangle. Imagine a rectangle sitting where you want the first character to be
drawn:

50505050

100100100100

150150150150

50505050 100100100100 150150150150

The bottom of the rectangle defines the baseline upon which the character(s) will
sit. The left side defines the start point (usually the left edge) of the character(s).
The height of the rectangle determines the size, including the descenders (so it
appears taller than the character), and the width determines the average character
width.

Use the parameters SHAPE BOTTOM, SHAPE LEFT, SHAPE TOP, and SHAPE
RIGHT to specify this imaginary rectangle.

Note: For center justification, the start point (bottom-left of imaginary
rectangle) defines the center point of the character string. For right
justification, it defines the right extent of the string. This is also
the default center of rotation in all cases.

Aspect Ratio

The character you will be creating is a shape, which may appear stretched or
compressed depending on the horizontal and vertical scale factors. If you want
your font to appear “normal”, consider the following:

• Shapes have their normal appearance (circles are circles, not ellipses)
when the horizontal and vertical scale factors are equal (specify GRAPH
EQUALSCALES).

If you are using EQUALSCALES, you can set the width of the
imaginary box to zero, i.e., set the right side to the same value as
the left side. This will cause the characters to be drawn at the
correct (“normal”) aspect ratio.

• If your scale factors are not equal, set the box width to an aspect ratio that

looks correct with the scale factors you are using. It should look about 3
times as high as it is wide, with your selected scale factors. It is best to

specify the scale factors explicitly in this case, since auto scaling may
change the scale factors if other objects are added to the graph.

In either case, zooming the graph in the horizontal direction only (left- or right-
arrows) changes the aspect ratio and will stretch or compress your drawn
character shapes.

Rotation

You can rotate the characters to any angle. The string is rotated around the
starting point (lower-left corner of the imaginary box). Use the statement

SHAPE ROTATE=num-expr

where the num-expr specifies an angle from 0 to 2π radians (or 0 to 360 degrees,
if DEGREES is specified).

Note: Shapes which are rotated may appear slanted if the horizontal and
vertical scale factors are different.

As with other shapes, you can also rotate the characters around an arbitrary point

with the parameter SHAPE ROTATECENTER=(x, y).

Example:

DEGREES
GRAPH EQUALSCALES, INCLUDEXAXIS=0, INCLUDEYAXIS=0
GRAPH WIDTH=6, HEIGHT=4, NOAXES
SHAPE BOTTOM=100, LEFT=100, TOP=200, RIGHT=100
SHAPE LINECOLOR=(0, 0, 0), FILLTYPE=SOLID, ROTATE=30
SHAPE FILLCOLOR=(0, 0, 0) // black
SHAPE FONT="Old English Text MT"
SHAPE BOLD=100, ITALIC=0
x$="Olde English"
SHAPE CHARACTERS=x$, TEXT
SHAPE LEFT=103, BOTTOM=103, TOP=203, RIGHT=103
SHAPE FILLCOLOR=(230, 200, 50) // gold
SHAPE TEXT

Applications

You can use outline character shapes to create extremely large characters, and
zoom way into them. This can be used to put a custom logo on your chart or
create banners and signs. Interesting effects can be created by varying the fill
colors and patters, line weights, aspect ratio, etc. Remember, white (255,255,255)
is a valid fill color, which is different from transparent or no fill. Drawing the
same text over itself but offset slightly can create interesting shadow effects (see
above). Have fun! Get creative! Explore the fonts on your computer close-up.
Print your girl/boy-friend’s name in big colorful letters.

Logarithmic Scales

When plotting character outlines on logarithmic scales, the shapes will appear
distorted. This is to be expected. It can produce some interesting effects.
However, if you want the text to appear undistorted, consider using the TEXT
statement instead.

Differences between SHAPE TEXT and TEXT.

Although these two statements can both produce text on your graph, their
functions and intended uses are quite different.

Feature / Function TEXT SHAPE TEXT
Intended Use Labeling points or

objects, titles, etc.
Letters as shapes.
Logos, signs, designs

Maximum characters 255 32
Multiple Lines Yes No
Maintains Shape Yes, regardless of

scale factors and log
scales.

No. May become
distorted. May create
interesting effects.

Outline / Fill /
Transparent / Hatch

No Yes

Justify Default is CENTER Default is LEFT
Data Size Yes Determined by

SHAPE parameters
Point Size Yes No
Location on Physical
Page

Yes, Use H= or V= No

Use to Label Axes Yes No
Appearance Looks better for small

fonts. Anti-aliasing.
Poor appearance for
very small fonts.

Boxed Yes No
Sliding Text Yes No
Speed Faster for small fonts Faster for large fonts
Auto-Scaling Doesn’t work Works like any other

shape.
Rotation Rotates around start

point (ANGLE=)
Rotates around start
point (ROTATE=) or
external point
(ROTATECENTER=)

Superscripts and
Subscripts

Yes No

Any color Yes Yes, outline color and
fill color may be
different.

Can be selected with
the mouse or deleted

No Yes

Getting an Outline of a text character.

This is similar to the SHAPE TEXT function, except that instead of drawing the
character, it returns the points required to draw that character in an array. In
the BASIC program, you may then use the points any way you want (like laying
out crop circles…).

The points returned are in data units. They are scaled, rotated and translated to
the desired location as if you were drawing them, except that nothing is drawn.

Even though nothing is drawn, you must still have a GRAPH active.

You specify the same SHAPE parameters as for the SHAPE TEXT function:

BOTTOM
TOP
LEFT
RIGHT (usually set to the same value as LEFT)
FONT

CHARACTERS="a-single-character"
ROTATE
BOLD
ITALIC

remember: values for these parameters set in previous SHAPE

statements will still be in effect, unless you override them.

In addition, specify an array in which the text shape information will be returned:

POLYPOINTS=array

This array must have been previously dimensioned using DIM array (n,2).
n may be any value you like, since the array will be replaced with a new
array which is the correct size to contain the text shape information.

Note: If you are going to draw the character outline which is returned in

the array, once the array has been used to draw the character, it
may be re-used to generate another character pattern, if you wish.

You don’t need the following descriptive parameters, since this function does not
draw anything on the screen:

LINEWEIGHT
LINECOLOR
FILLTYPE
FILLCOLOR
HATCH

Finally, specify the new parameter:

SHAPE CHAROUTLINE

This will select the specified font and get the outlines for the specified character.
The outlines are returned in the array specified in POLYPOINTS. They will be
scaled, offset and rotated just like for the SHAPE TEXT function. All values in
the array are DOUBLE. If the array entry specifies a point, then array(n,0) is the
x-value and array(n,1) is the y-value.

Note: If the first entry in the array is zero, then there is no outline
because the character is either a space or an invalid character for
that font.

Format for the Array.

The shape consists of one or more “contours”. Each contour is a closed
shape consisting of one or more “curves”. Curves may be polylines or
poly-Bezier curves. In each curve, the start point (which is not given) is

assumed to be the end point of the previous curve. If the last curve does
not end at the contour start point, it is assumed that it will be closed up
when the contour is finished. Poly-Bezier curves consist of 3 points
(ctlpt1, ctlpt2, and end) for each segment, where the end point is also the
start point for the next segment.

first “point”: (# contours, index-to-metrics)
for each contour:

1st “point” (# curves, 0)
2nd point (start point x, y)
for each curve:

1st “point” (# points, type)
type: 1=polyline, 3=Bezier

... (point-x, point-y)

... etc.
 (next curve structure)
...

 (next contour)
...

“metrics” data:

first “point” x- and y-offset to the point where the next
character should be drawn, if another
character is to follow this one. These
coordinates are rotated along with all the
points in the structure above. Although this
function only generates one character
outline at a time, you can call it multiple
times to form a “word”, in which case, the
offset here will tell you where to start the
next character, assuming you want the
characters to lie along the same line.

bounding-box The bounding box consists of 4 points which

define a rectangular box surrounding the
[rotated] character. The bounding box itself
is not rotated, but encloses all the points of
the [rotated] character shape. This can be
used to determine whether a rotated
character will fit within another shape or
overlap another character or shape.

Note: The bounding box of a rotated

character may be slightly larger,
since it must contain the rotated

boundary box of the un-rotated
character.

Plotting the returned shape

Although it is much faster and easier to simply use the SHAPE TEXT function to
draw character outlines on the screen, you may want to do one or more of the
following:

• pick the outline apart,
• modify the outline,
• reflect the character (“mirror writing”),
• distort the shape,
• fill the shape with a pattern,
• rotate it about some external point,
• graph only part of the shape,
• write the points to a file,
• print out points to study them,
• use the data to lay out a large sign,
• draw the character rotated to a different angle,
• combine it with another shape before drawing it,
• write the array to a file, then read it back later in another program.

Note: If you are only generating the character outline in order to view or

analyze its structure, it is best to generate it with its start point at the
origin and un-rotated.

You can plot the character outline by using the statement SHAPE
PLOTCHAROUTLINE. This statement interprets the array and creates a “Complex
Connected Shape” (see above) and draws it using the current parameters:

LINEWEIGHT
LINECOLOR
FILLTYPE
FILLCOLOR
HATCH
ROTATE
ROTATECENTER

Simply reference the array with the POLYPOINTS parameter, as follows:

SHAPE POLYPOINTS=array-name, PLOTCHAROUTLINE

Note: You can also plot the character outline by writing a BASIC routine to go

through the table and plot all the lines and curves. An example is
provided in the web site sample program “character outlines.txt”. This is

not simple, and the PLOTCHAROUTLINE function will handle it more
easily, but the example is there to show you how to parse through the
outline array and plot the outline.

Once the shape is plotted, the array of points still remains, and you can use it to
plot the same character again with a different rotation, color, etc., or re-use the
array for a different outline. You could also offset every point in the structure as
you plot it to plot the character in a different location, or scale the points to a
different size.

Note: It is faster (and easier) to re-generate the character outline with a
different offset and/or rotation than to go through the structure and
rotate and/or translate every point.

Note: If a ROTATE angle is in effect when you go to plot the character

curves, the entire character outline will be rotated. If you specified
a ROTATE angle when the outline was created, it will be rotated
again when it is plotted (double rotation). The first rotation will be
around the (BOTTOM, LEFT) point of the character’s defining
rectangle. The second rotation will be around the ROTATECENTER
value in effect when you plot it.

Note: Although SHAPE PLOTCHAROUTLINE generates a Complex

Connected Shape when plotted, it only generates one entry in the
shape table. Therefore, the lastshapeid variable is correct after
issuing the SHAPE PLOTCHAROUTLINE statement.

Plotting more than one character

If you want to plot several characters in a row, you need to know where to start
the next character. This is given in the “metrics” part of the structure. The first
“point” in the metrics is the x and y coordinates of where the next character
should start. These coordinates are rotated and translated along with the character
data, so you can use them as the start location for the next character.

Advantages of doing this instead of just using the GRAPH TEXT function:

• Each character can be a different color or fill pattern, line weight, outline
color.

• Each character can be a different font, bold, italic, etc.
• Each character can have a different rotation angle.
• All characters do not have to lie on a straight line.
• You can space the characters out or tighten them up by adjusting the next

offset values (don’t forget to rotate your “adjustments” so the characters
stay on the line).

Some interesting designs can be created this way. It takes more work, but it
enables you to create exactly the effect you want.

Example Program.

The following is an example of a BASIC program which will retrieve character
outlines and then draw them. It illustrates some of the effects you can produce
using character outlines.

First, the graph:

The BASIC program which created it is available on the website as “character
outlines.txt”.

Modifying the Character Outlines.

The biggest advantage in using CHAROUTLINE / PLOTCHAROUTLINE over just
using SHAPE TEXT is the ability to modify the returned outlines before plotting
them. In this way, you can create custom designs that aren’t available using the
fonts themselves. (Hint: try it with the “Wingdings” font.)

Once the outline has been returned, you may parse through it and apply
transformations, rotations, scaling, or whatever you want, then plot the results.

CAUTION:

The structure must remain correct. If you add a point, you must adjust
all the offsets and counters to reflect the additional point(s). If you break
the structure, you could crash QuickCalc, not just the BASIC program.

If you add points, you will need to increase the size of the array, which
means dimensioning a new array and copying all the points (plus the new
ones) into it.

It is assumed that you know what you are doing.

An example of how the structure can be modified is given below. This program
allows you to modify a character outline by slanting it right or left, reflecting it
horizontally, or flipping it vertically (or any combination). You can see where in
the program the transformations are applied to the points. The following are
sample graphs with different values of the parameters slant, reflect, and flip:

110110110110

120120120120

130130130130

140140140140

150150150150

160160160160

170170170170

90909090 100100100100 110110110110 120120120120 130130130130 140140140140 150150150150

 100100100100

105105105105

110110110110

115115115115

120120120120

125125125125

130130130130

135135135135

140140140140

145145145145

150150150150

155155155155

110110110110 115115115115 120120120120 125125125125 130130130130 135135135135 140140140140 145145145145 150150150150 155155155155

 100100100100

105105105105

110110110110

115115115115

120120120120

125125125125

130130130130

135135135135

140140140140

145145145145

150150150150

155155155155

110110110110 115115115115 120120120120 125125125125 130130130130 135135135135 140140140140 145145145145 150150150150 155155155155

 slant = -.2 reflect = -1 flip = -1
 (like in “Toys R Us”)

The example program which produced these graphs is shown below, and is also in
the Sample Files as “warp character outlines.txt”.

// This program demonstrates how to get character outlines,
// modify them and plot them.

// In this example, the character outline is obtained, then
// modified by slanting it forward or backward,
// reflecting it and/or flipping it.

INCLUDE "standard_colors.txt"
// (make sure you have downloaded this file)
DEGREES
DIM array (10,2)

// Try different values of slant, reflect and flip
slant = -.2 // 0 is upright, + = slant right, - = left
reflect = 1 // 1 = normal, -1 = reflect horiz.
flip = 1 // 1 = normal, -1 = flip vert.

GRAPH EQUALSCALES
GRAPH INCLUDEXAXIS=0, INCLUDEYAXIS=0
GRAPH WIDTH=6, HEIGHT=6
SHAPE FONT = "Times New Roman"
SHAPE CHARACTERS = "R"
SHAPE LEFT = 100, RIGHT = 100
SHAPE BOTTOM = 100, TOP = 200
SHAPE BOLD = 100, ITALIC = 0
SHAPE ROTATE = 0

SHAPE POLYPOINTS = array
SHAPE CHAROUTLINE
// Now array has new dimensions, and contains the outline.

// "Modify" the points in the array

i = 0
num_contours = array(i, 0) // number of contours
m = array(i, 1) // metrics offset
h = array (m+3, 1) - array (m+2, 1) // height
cx = (array(m+2, 0) + array (m+1, 0))/2 // horiz center
b = array(m+1, 1) // base
cy = b + h/2 // vert center

i = i + 1
WHILE num_contours > 0
 // Since we are only modifying the points, we can treat the
 // Polyline and Bezier curves the same.
 num_curves = array(i,0) // number of curves in this contour.
 i = i + 1
 // next point is start point for this contour. Modify it.
 x = array(i,0): y = array(i,1) // get the point
 x = x * (1 + slant * (y-b) / h) // slant the point
 x = (x - cx) * reflect + cx // reflect the point
 y = (y - cy) * flip + cy // flip the point
 array(i,0) = x: array (i,1) = y // put it back
 i = i + 1

 WHILE num_curves > 0
 num_points = array(i,0) // number of points in curve
 i = i + 1

 WHILE num_points > 0
 x = array(i,0): y = array(i,1) // get the point
 x = x * (1 + slant * (y-b) / h) // slant the point
 x = (x - cx) * reflect + cx // reflect the point
 y = (y - cy) * flip + cy // flip the point
 array(i,0) = x: array (i,1) = y // put it back
 i = i + 1
 num_points = num_points - 1
 WEND // end of curve (polyline or Bezier)
 num_curves = num_curves - 1
 WEND // end of contour
 num_contours = num_contours - 1
WEND // end of shape

SHAPE ROTATE = 0
SHAPE FILLTYPE = SOLID, FILLCOLOR = red
SHAPE LINECOLOR = black

SHAPE PLOTCHAROUTLINE
END

Selecting Shapes With a Mouse

The purpose of QuickCalc graphics is not to create graphic-oriented programs like
one does in C or C++. The idea was to provide easy-to-program, good-looking
graphs that could be printed or included in other documents like reports.

That being said, it would be nice, sometimes, to click on a shape that you have
drawn and have something happen.

Note: This is not simple BASIC programming, but then, this is the
Advanced Graphics document….

An attempt was made to keep this somewhat simple (like BASIC) but provide the
functionality of being able to click on “objects” on the graph. This can provide
you with the means to create a kind of menu or graphical selection tool.

Challenges

BASIC is not a multi-tasking environment, nor does it respond to
interrupt-driven events. In order to respond to a mouse-click “event”, you
must be in a loop waiting for something to happen.

QuickCalc graphs are not static in size, shape, or scale. Using arrow keys,
the mouse, or menu zoom functions, the graph can change its size and
offsets. This means that the objects (“shapes”) on the screen can change
their size and position, and are sometimes partly off the screen. In order to
be consistent with the design philosophy of QuickCalc graphics, mouse-
clicking on shapes must work regardless of the zoom factor or offsets.

Some shapes are very irregular (see “Complex Connected Shapes”,
above). The program has to be able to identify the boundaries of any
shape you can draw at any size, and recognize the inside of “hollow”
shapes.

The user can already click on a graph, in order to “drag” it. For that
reason, the mouse “click” will be tested when the button is released.

Making a Shape “Clickable”

When you code the SHAPE statement for the desired figure, include the
parameter MOUSECLICK before the keyword that actually draws the shape.

Example: To draw a circle, at (10,10) with a radius of 5, code:

SHAPE CENTER=(10,10), RADIUS=5, MOUSECLICK, ELLIPSE

The MOUSECLICK parameter should appear before the ELLIPSE, and is
good for only one shape. It must be re-specified for each additional
shape you draw that you want to be “clickable”.

If you place two keywords (like ELLIPSE and RECTANGLE) on the
same SHAPE statement, only the first one will get the
MOUSECLICK attribute. It is best to use separate SHAPE
statements in this case.

Identifying the Shape

When you code a SHAPE statement that draws a figure, the information is
placed into the “shape table”, which is used over and over again as the
graph is re-drawn. If you are going to be able to identify which shape was
clicked on, you must know the identifying number of the shape.

When a shape is added to the table, the identifying number is placed into a
variable LASTSHAPEID, which you should access immediately after the
SHAPE statement and before you create any more shapes (another reason
for using separate SHAPE statements for each figure).

Example:

SHAPE CENTER=(10,10), RADIUS=5, MOUSECLICK, ELLIPSE
circle_id = LASTSHAPEID

Later, when the circle is clicked on, the ID returned will be the value in
circle_id.

You may make any (or all *) of the shapes “clickable”.

Notes:

* Shapes like LINE and BEZIER are “open” (have no inside). If the
line is only 1 pixel wide, it is very difficult to click on.

Complex Connected Shapes (see above) have several entries in the
shape table. The ID you want is the first one. Copy it immediately
after the BEGINPATH.

The line outlining a shape is also considered part of the shape.
This is noticeable if you have a “fat” line weight.

The “cut-out” part of a text symbol or complex connected shape is
not considered part of the shape. If you click in it, you will not
select that shape.

It doesn’t matter whether the shape is filled with solid color, hatch,
or no fill. The mouse selection works the same.

If you click on a spot where two or more shapes overlap, the ID
returned is that of the most recent shape that was drawn (shape
with the highest shape ID).

Too many “clickable” shapes could slow the response of the
program to mouse clicks.

If you have a lot of mouse-selectable shapes, you will probably
want to create a table [array] of the ID’s and meaning of the
shapes. That is a programming decision.

If you are going to be clicking on your graph, you can use the
statement GRAPH LOCKSCREEN=1 to prevent accidentally re-
positioning or re-scaling the graph.

Graphs which include “clickable” shapes do not look any different than
ordinary graphs. Printing a graph or creating a metafile or JPEG will work
the same as before.

If you are not testing for mouse clicks, you will not know that anything
has been clicked on.

Testing for Mouse Clicks on Shapes

You can test if the mouse (left button) was clicked on a shape by using the
function CHECKMOUSECLICK. This returns the Shape ID of the most
recent “clickable” object that was clicked on.

If the mouse has not been clicked on the graph since the last call to
CHECKMOUSECLICK, the function will return -1

If the mouse was clicked on the background or a “non-clickable” shape,
the function will return -2. “Dragging” the graph (with the mouse not
pointing at a “clickable” object) will produce a -2 when the button is
released. You may want to ignore this event.

After calling CHECKMOUSECLICK, the most recent ID is reset (to -1), and
subsequent calls to CHECKMOUSECLICK will return -1 until the mouse is
clicked again.

If CHECKMOUSECLICK returns a number (positive or zero), it represents a
Shape ID of a “clickable” shape. This signifies an event (mouse clicked
on a shape). What you do with that information is up to you.

You can put CHECKMOUSECLICK anywhere in your program. For
example, you might be performing a very long calculation and want to
click on a “button” to display your progress.

Normally, you would come to the point in you program when you are
looking for a mouse selection. At that point, you would loop, testing for
mouse clicks, as follows:

100 DELAY 10
id = CHECKMOUSECLICK
IF id < 0 THEN GOTO 100
… (code to check the value of id and act accordingly)
GOTO 100 // continue checking

Note: There is no way to break out of that loop, unless one of the shapes

represents a “End” button.

Note: The DELAY is to allow other programs to run while keeping CPU

usage to a minimum while you are waiting. Making the delay too
long will make dragging the graph very jerky, and is unnecessary.
10 works well.

Note: Test for id= -2 if you want to know if the user clicked on

something other than a “clickable” shape. This is one way to exit,
but remember that “dragging” can also result in a -2.

Note: If you want to create a “button” with text on it, draw the shape

(usually a rectangle) and make it clickable. Then draw the text on
top of it (with the TEXT statement) , using the DATESIZE=
parameter so it will still fit if you zoom the graph.

Getting a Character from the Keyboard

CHECKMOUSECLICK will also test if the user typed a keystroke. This is
similar to INKEY$, but you don’t have to wait for it. The most recent
occurrence of a mouse click or keystroke will be returned.

Keystrokes (characters) are indicated by a negative value of the ASCII
character typed. For example, if you type "a", the value returned will be
–ASC("a").

The TAB key and the arrow keys have special meaning in the QuickCalc
graphics window, and are not acknowledged by CHECKMOUSECLICK.

Note: CHECKMOUSECLICK only works if the graph window is active and

has the focus. If you switch focus to the QuickCalc BASIC
window, typed characters will be ignored until you switch back.

Getting the Mouse Coordinates of Where You Clicked

Every time the [left] mouse button is released (while pointing at the
graph), the mouse coordinates where you clicked (in data units) are stored
in system variables MOUSEXCOORD and MOUSEYCOORD, where you can
access them. This is true whether or not you got a “hit” on an object.
However, you should still call CHECKMOUSECLICK, so that you will
know if an event happened.

If a scale is logarithmic, that coordinate is converted from a
logarithm back into data units. If a scale is DATETIME, the value
returned is a DATETIME variable, which you can format, if desired,
using FORMATDATETIME$.

Note: You may still check for mouse clicks, even if there are no “mouse-

clickable” shapes. In that case, CHECKMOUSECLICK will return -2
if the mouse had been clicked and -1 if not. You can also retrieve
the mouse coordinates, as above.

Getting the State of the SHIFT and CONTROL Keys.

Every time the mouse button is released, the state of the SHIFT and
CONTROL keys is stored in the system variable KEYSTATE. The values
are:

0 = Neither key is pressed
1 = SHIFT key is down
2 = CONTROL key is down
3 = Both keys are down

You can check the variable KEYSTATE to see if either key was held down
at the time the [left] mouse button was released. In this way, you can
cause a mouse click to have more than one meaning, e.g., “create” or
“delete”.

Note: Dragging the graph will not happen if the SHIFT or CONTROL key

is held down. That changes the mouse function and allows you to
use the mouse for other things without unintentional dragging.
You can also use GRAPH LOCKSCREEN=1 to avoid unintentional
dragging.

Sample Program

An example is given in the sample program mouse_click_shapes.txt
(on the web site). Run it and click on the various shapes.

Deleting Shapes

Once a shape has been drawn, it becomes part of the graph and remains there until
the graph is “closed”. If you want to remove a shape from the graph, you can do
so with the DELETESHAPE statement.

In order to delete a shape, you must know the Shape ID (see the preceding
section). Again, you must save the value returned in LASTSHAPEID, immediately
after creating the shape (or after the BEGINPATH, for complex shapes). This
Shape ID is used to specify which shape you want to remove.

DELETESHAPE (shape-id)

There is no indication of success or failure with this statement. If there is no
shape with that ID, no action is taken. If the shape has already been deleted, it is
gone and can’t be deleted again. It can be re-drawn, but then it will get a new
Shape ID.

Note: Only shapes with a valid Shape ID can be deleted. You can’t delete

something that is a part of a path (complex connected shape). You must
delete the entire complex connected shape.

Note: Shape IDs do not change when a shape is deleted, so the values you save

for mouse-click testing are still valid (except for the one you deleted).

Note: The shape will be deleted even if it is not currently visible, scrolled off the

graph, covered up by another shape, etc.

By using DELETESHAPE, you can create a kind of motion on your graph by
repeatedly deleting and redrawing the shape, offset slightly (also, check out the
CHANGESHAPE statement, described below.) Remember, that this is not a
motion-graphics program, so I wouldn’t expect too much, but you could have
some fun with it.

Changing Shape Parameters

Once a shape has been drawn it is possible to change [some of] its parameters
without having to delete and re-draw it. This is done using the CHANGESHAPE
statement. The format is:

CHANGESHAPE shape-id, list-of-parameters

In order to change a shape, you must know the Shape ID (see the preceding
section). Again, you must save the value returned in LASTSHAPEID, immediately
after creating the shape (or after the BEGINPATH, for complex shapes).

If the given shape-ID does not correspond to an existing shape, it will
cause an error.

The allowable parameters are nearly the same as for the SHAPE statement
descriptive parameters. See the description for SHAPE statement parameters in
the “Intermediate Graphics” document.

Not all parameters apply to all shapes, and some cannot be changed. Those
parameters that can be changed are summarized in the table below, followed by
notes on their use.

 R
ec

ta
ng

le

L
in

e

B
ez

ie
r

Po
ly

go
n

Po
ly

L
in

e

E
lli

ps
e

A
rc

C
ho

rd

Pi
e

T
ex

t

Pl
ot

C
ha

rO
ut

lin
e

C
om

pl
ex

 S
ha

pe

Top OK n/a n/a n/a n/a OK OK OK OK OK n/a n/a

Bottom OK n/a n/a n/a n/a OK OK OK OK OK n/a n/a

Left OK n/a n/a n/a n/a OK OK OK OK OK n/a n/a

Right OK n/a n/a n/a n/a OK OK OK OK OK n/a n/a

Center OK OK OK OK OK OK OK OK OK OK n/a n/a

HRadius OK n/a n/a n/a n/a OK OK OK OK OK n/a n/a

VRadius OK n/a n/a n/a n/a OK OK OK OK OK n/a n/a

Radius OK n/a n/a n/a n/a OK OK OK OK OK n/a n/a

FillType OK n/a n/a OK n/a OK n/a OK OK OK OK OK
Hatch OK n/a n/a OK n/a OK n/a OK OK OK OK OK
FillColor OK n/a n/a OK n/a OK n/a OK OK OK OK OK
LineWeight OK OK OK OK OK OK OK OK OK OK OK OK
LineColor OK OK OK OK OK OK OK OK OK OK OK OK

Rotate OK OK OK OK OK OK OK OK OK OK NO NO

RotateCenter OK OK OK OK OK OK OK OK OK OK NO NO

LineStart n/a OK OK n/a n/a n/a n/a n/a n/a n/a n/a n/a
LineEnd n/a OK OK n/a n/a n/a n/a n/a n/a n/a n/a n/a
CtlPt1 n/a n/a OK n/a n/a n/a n/a n/a n/a n/a n/a n/a
CtlPt2 n/a n/a OK n/a n/a n/a n/a n/a n/a n/a n/a n/a

StartAngle n/a n/a n/a n/a n/a n/a OK OK OK n/a n/a n/a
EndAngle n/a n/a n/a n/a n/a n/a OK OK OK n/a n/a n/a

Bold n/a n/a n/a n/a n/a n/a n/a n/a n/a OK n/a n/a
Italic n/a n/a n/a n/a n/a n/a n/a n/a n/a OK n/a n/a
Font n/a n/a n/a n/a n/a n/a n/a n/a n/a OK n/a n/a
Characters n/a n/a n/a n/a n/a n/a n/a n/a n/a OK n/a n/a
Justify n/a n/a n/a n/a n/a n/a n/a n/a n/a OK n/a n/a

Smooth OK n/a n/a OK OK n/a n/a n/a n/a n/a n/a n/a
Average OK n/a n/a OK OK n/a n/a n/a n/a n/a n/a n/a

Direction n/a n/a n/a n/a n/a n/a OK OK OK n/a n/a n/a
MouseClick OK OK OK OK OK OK OK OK OK OK OK OK

PolyPoints n/a n/a n/a OK OK n/a n/a n/a n/a n/a NO NO
PolyCount n/a n/a n/a OK OK n/a n/a n/a n/a n/a NO NO

Notes:

Refer to the documentation for the SHAPE statement for the meaning of
the various parameters for different shapes.

The CHANGESHAPE statement cannot be used to change the type of a
shape, e.g., a rectangle cannot be changed into an ellipse. A circle can be
changed into an ellipse because they are both ellipses – only the radii are
changed.

You cannot change the elements of a Complex Connected Shape. The
parameters you can change (e.g., color) refer to the object as a whole.

Parameters which do not apply to the referenced shape will have no effect
(see the table, above).

After changing the size and/or location of an object, automatic scaling may
no longer work properly, i.e., the graph may not automatically adjust to
contain the changed object. In most cases, the region will expand to
contain the modified object, but will not contract if the object is moved
closer to the center. If automatic scaling is not in effect, the object may
disappear off the graph.

Changing parameters for a previously-drawn shape does not change the
shape-ID number, unlike when the shape is deleted and re-drawn.

CHANGESHAPE does not affect the order in which shapes are drawn. The
shape on top of another remains on top.

Descriptive parameters do not carry over to the next shape when using
CHANGESHAPE, unlike what happens with the SHAPE statement.

Each CHANGESHAPE statement operates on only one shape, referenced by
the shape-ID. The statement may contain many parameters.

You can successively modify the same shape with different
CHANGESHAPE statements. Just use the same shape-ID.

If several parameters are being changed for the same shape, it is best to
put them all on the same CHANGESHAPE statement, if possible. The
shape is not redrawn until all the parameters have been processed.

Size and position parameters for rectangles and ellipses refer to the
original un-rotated size and position of the shape. The shape is then re-
rotated, if necessary. If you want the modified shape to be un-rotated,
specify ROTATE=0.

Parameters are processed in the order given in the CHANGESHAPE
statement. If the parameters are given in a different order, the result may
be different.

Remember that a SHAPE TEXT statement is different from a TEXT
statement. CHANGESHAPE only operates on shapes.

Note that the CENTER=(x,y) parameter works differently for TEXT shapes,
in that it refers to the lower-left corner of the defining rectangle.

Note that changing the outline and fill colors of a text shape to the
background color will make it invisible. This can be useful to make
flashing text or buttons,

Using ROTATECENTER="center" for shapes without a defined center (like
lines) will rotate about the center value which was in effect when the
shape was originally created, unless you override it with a new CENTER
value. Note that changing the CENTER value for such objects does not
move the object – it merely changes the default center of rotation.

The DIRECTION parameter is used primarily inside Complex Connected
Shapes, where the CHANGESHAPE statement cannot be used. It will,
however, have the effect of inverting a PIE, CHORD or ARC shape, e.g., a
90-degree arc becomes a 270-degree arc.

The MOUSECLICK parameter is different here than in the SHAPE
statement. In CHANGESHAPE, specify MOUSECLICK=1 to activate mouse
click checking for the shape, and MOUSECLICK=0 to deactivate it.

When changing the array of points or count of points for a POLYGON or
POLYLINE, you must specify both POLYPOINTS=array and
POLYCOUNT=count on the same CHANGESHAPE statement, e.g.,

changeshape id, polypoints=array1, polycount=6.

You must supply the entire array, not just the points that have
changed. It can be a totally different array or the original array
with some changed values.

Although you can’t change or rotate the array used in SHAPE
PLOTCHAROUTLINE, you can change all the parameters of a SHAPE TEXT
shape, including characters, font, size, rotation, etc. This will usually give
the results you desire.

Applications: Radio buttons, some kinds of animation, games, puzzles,
status indicators, progress bars (see below).

The following graphics represent some of the ways you can use
CHANGESHAPE to show switches and indicators. The program to produce
this is in the sample programs as INDICATORS.TXT.

The toggle switch position is changed by rotating the “toggle” handle
around the center of the switch. The meter position is changed by rotating
the line representing the needle. The progress bar is changed by changing
the right side of the green rectangle. The rotary switch is changed by
rotating the polygon. The axes and grid lines were suppressed since they
did not contribute to the display.

