
Working With Files

BASIC allows you to create, write and read files on disk, any source that can be mapped to a
drive letter, or any network shared file to which you have access rights. It also supports
reading from and writing to external devices via a serial or USB port (see the section on
SERIAL files, below) and BINARY files (see the section on BINARY files, below).

Specifying File Location and Name.

The file specification is given in the OPEN statement. The format is

OPEN file-mode, file-num, file-specification, record-size

The file-specification is a string expression which must evaluate to either be a file
name or a complete or partial path.

Note: For SERIAL files, the file specification is the name of the COMM port
(e.g., COM1). See the section on SERIAL files, below.

If it is a name or partially-qualified name (partial-path \ filename), then it will be
appended to the Current Working Directory.

In GUI mode, the current working directory is shown in the “Working
Directory” box at the top of the screen (whether or not “Use Working
Directory” is checked.) Normally (but not always) this is the path from which
the BASIC program is loaded. (See description of the LOAD and RUN
commands).

In CONSOLE mode, the current working directory is that which was in effect
when QUICKCALC was started. You may override this with the CHDIR
statement.

The file specification must be a string expression. You can specify this in several
ways, just like specifying file paths\names in DOS or Windows, e.g.,

"filename.ext"
"..\\filename.ext"
"partial-path\\filename.ext"
"c:\\folder\\sub-folder\\filename.ext"
savedpath$ + "\\" + filename$
"\\\\network-computer\\shared-folder\\sub-folders\\filename.ext”

Note: String constants must be contained in quotes. The backslash (\)
character is specified as a double-backslash in quoted string constants. It is
converted back into a single backslash when the expression is evaluated.

If a full path is not specified, the file name or partial path is appended to the current
working directory in order to create the complete file specification.

If you wish to enter the file name at run time, you may issue an INPUT statement and
type it in at run time. Assign the input string to a string variable and use that in the
input statement, e.g.,

INPUT filename$
OPEN INPUT, 2, filename$

In GUI mode, you may use the function BROWSEINPUTFILE$ or
BROWSEOUTPUTFILE$ to open a dialog to select the file from anywhere on your
computer or network. These functions return a string containing a full path which
you can use in an OPEN statement, for example:

OPEN (INPUT, 2, BROWSEINPUTFILE$ (“File to Read”)
OPEN (OUTPUT, 3, BROWSEOUTPUTFILE$ (“File to Write”)

Note: The browse functions start browsing in the current working directory. If you

want the browse to start in another directory, you can use the CHDIR statement
to set it. You may want to save the current working directory first (from
WORKINGDIR$) so that you can restore it later.

Note: Once a file has been opened, you can determine its length (size in bytes) with

the FILESIZE (file-num) function.

SEQUENTIAL and RANDOM ACCESS Files.

Sequential Files.

A Sequential file is a stream of text characters. You create a sequential file with the OPEN
OUTPUT, … or the OPEN APPEND, … command. OPEN APPEND, … re-opens an existing file
so that you can add records to the end of it.

Sequential files are always read or written sequentially. Records (or lines) follow each other
in the file. At the end of each line, the system puts in a carriage-return (hex ‘0D’) and a line-
feed (hex ‘0A’). This is done automatically when you complete writing a line.

Writing to a Sequential File.

You write to a sequential file with the PRINT # file-num, PRINT # file-num ; USING, or WRITE
file-num statements.

With the PRINT statements, you can format the data however you like, but it will not
necessarily be in a format that can be INPUT and decoded into variables. PRINT is
useful when the file is going to be read by a person or printed later.

The WRITE statement is used when you want to be able to re-read the file later using
the INPUT #file-num statement. The data values written are separated by commas and
string values are enclosed in quotes. LONGMATH numbers are written in a special
format which will allow them to be re-input (see “Working with Long Numbers”).
Records created with the WRITE # statement are not formatted for easy reading, but
are in the correct format for the INPUT #file-num statement.

With both the PRINT and WRITE statements, if the statement ends in a semicolon, the
line is not terminated, but may be continued with additional PRINT or WRITE
statements. The line is terminated and output when a PRINT or WRITE statement
appears that does not end in a semicolon, or when the maximum line length is
reached.

Note: PRINT and WRITE statements may be intermixed in the same output
line.

When the line is complete, a c/r and l-f are appended to the line and it is written to the
file. The line-feed (or “new-line”) character marks the end of the line. If no data is
written, e.g, PRINT #file-num with no variables, there will still be a c/r l-f pair,
indicating a zero-length record.

The null character (hex ‘00’) is not used in sequential files, and should be avoided,
since some programs use it to mark the end of the file. Immediately following the
line-feed is the first character of the next record (or the end of the file.) There is no
null character at the end of the file.

The output file must be closed before it can be re-opened for input.
Use CLOSE file-num or simply CLOSE to close all open files.
All files are closed automatically when a program terminates, except when CHAIN-ing
to another program .

Reading from a Sequential File.

Once the file has been opened for INPUT, reading begins at the beginning of the file. There
are two ways to read data: INPUT # and LINE INPUT #.

INPUT #file-num; list-of-variables reads data from the file and assigns the data to
variables.

The data read must be compatible with the variable type to which it will be
assigned. May contain numbers or strings (quoted or unquoted), separated by
commas. Unquoted strings will have blanks and tab characters stripped off

front and back when they are read, and may not contain commas, quotes, or
start with a digit, sign, or decimal point (i.e., must not be confused with a
number).

If the end of a line is reached before the list-of-variables is exhausted, the next
record is read and variables continue to be assigned from the new record.
Blanks and c/r and l-f characters are ignored. The file is scanned until the
next data is encountered.

If the end of the file is reached before all the variables are assigned, an end-of-
data error will occur. If you want to avoid these errors, you can use the EOF
(file-num) to detect end-of-file before reading, or the INPUT (file-num)
function, which will tell you the type of variable coming up so that you can
avoid type mismatch errors.

LINE INPUT # file-num, string-variable reads the entire line (if possible) into a string
variable.

If the line has been partially read (by an INPUT # or LINE INPUT # statement),
the LINE INPUT # will read the remainder of the line (if possible).

All characters are read, including spaces and non-printable characters, up to
the c/r l-f sequence, which are not included in the resulting string.

Note: If a line-feed or null character is embedded in a record, it will terminate
the input line prematurely. You should avoid placing these characters in your
data files.

If the remainder of the line is longer than 255 characters, the next 255
characters will be returned. The next LINE INPUT # (or INPUT #) will continue
reading from that point.

LINE INPUT # will not read beyond the end of the record. If the record
contains no characters, a zero-length string (null string) is returned.

If a LINE INPUT # is executed at the end of the file, an end-of-file error will
occur. To avoid this kind of error, you can use the EOF (file-num, “LINE”)
function. This function does not skip over blanks or zero-length records.

Random-Access Files.

Basically, a RANDOM file is a file containing a number of records, all of which are
the same length. When a file is opened for RANDOM access, you can both read and
write to it, thus allowing you to access records in any order (not necessarily
sequential).

The record length must be specified when the file is opened, and if the file already
exists, that length must be the same as the length specified when the file was
originally created.

Each record in the file has a number (starting with 1). The position in the file for
reading or writing that record is calculated by multiplying the record number minus
one by the record length.

A record must be written before it can be read. Records do not need to be written in
sequence. If you write a record beyond the current end of the file, the file is extended
to include the new record and the space between is filled with binary zeros. The file
is, therefore, as long as the highest-numbered record that was written.

If you try to read a record that is beyond the end of the file, you will get an error. If
you try to read a record that is within the file, but was never written, you will get all
blanks.

Writing to a RANDOM file.

Each RANDOM file has an associated buffer, which is as long as the file’s record
length. You cannot access the buffer directly, but can build a record in the buffer
using PRINT #file-num, PRINT #file-num USING, or WRITE #file-num, and you can map
variables into the buffer space using the FIELD statement (explained below).

Once the record has been built in the buffer, you output it to the desired location in
the file with the PUT #file-num, record-number statement. The contents of the buffer
are transferred to the file at the position for that record. Exactly the record length is
transferred, regardless of what you wrote to the buffer – the remainder is padded with
blanks. The buffer contents are preserved in case you want to write the same data to
another record number.

If the record-number is not given, the next record following the last PUT is written.

Creating the Record in the Buffer using PRINT # and WRITE #.

Writing to a buffer is similar to writing to a sequential file, with a few
exceptions:

A PRINT # or WRITE # always starts at the beginning of the buffer, unless a
previous PRINT # or WRITE # left the line incomplete by ending in a
semicolon.

If you try to PRINT # or WRITE # beyond the record length (end of the buffer),
you will get an error, so keep track of the buffer position and size of the data
written.

You may only write one line to the buffer. If you write a second line, it will
over-write the first.

Following the WRITE # or PRINT #, the remainder of the buffer is padded with
blanks. If you just want to fill the buffer with blanks, use a PRINT # statement
with no parameters.

LONGMATH numbers cannot be written to the buffer with a WRITE #
statement. WRITE # formats LONGMATH numbers in a multi-line format.
You may use the PRINT # statement for LONGMATH numbers, provided the
number will fit in the buffer.

Creating or Updating the Record in the Buffer using FIELD variables.

When you read a RANDOM file record (using GET), the record remains in the
buffer and you may update “fields” (groups of bytes) within that record. You
must first define the fields in the record (buffer) with a FIELD statement:

 FIELD #1, 10 AS a$, 20 AS b$, 5 AS c$

specifies that the buffer for file #1 is divided such that the first 10 characters
are referenced by a$, the next 20 by b$, and the next 5 by c$.

You can then set data into these fields by using the variable (field) name in an
assignment statement or in an INPUT, INPUT #, READ, LSET or RSET
statement. In this way, they act similar to ordinary variables.

Examples:

a$ = "Hello"
b$ = s$
LSET c$ = s$
RSET c$ = s$
INPUT a$,…
INPUT #2, a$, …
READ a$, …

In each case, the value which is read or assigned to the field variable must be
a string, string variable, or something which converts to a string. If the value

you wish to assign is a DOUBLE, you should first convert it to a string using
the STR$ function. LONGMATH numbers may be assigned directly to strings,
provided that they are less than 256 characters long.

Note: You can also use FIELD statements to redefine string variables (see
“Using FIELD statements with String Variables”, below)

Caution: Any string assigned to a field variable will be truncated to the
length of the field. This can cause undesirable results if the string is a
LONGMATH number, for example, since you could lose the decimal point or
exponent part of the number. To be safe, you should set the floating point
length (with the FLOAT statement) and convert the number to one whose
length will fit in the target field.

Note: Strings assigned to field variables are left-justified and padded with
spaces (except for RSET, which right-justifies the string if it is shorter than the
field width, and pads with spaces on the left).

Note: FIELD statements are processed before the program is run. They may
appear anywhere in the program. They are not valid from the command line.

Note: It is possible to move data within the buffer by assigning one field
string variable to another, e.g., c$ = a$, in the example above.

Caution: Referencing (using or assigning to) a field variable which is beyond
the length of the record will result in an error.

Redefining Records.

A FIELD statement defines how a record is laid out, or broken up into fields.
If you want to redefine the fields in a given record, you can use multiple
FIELD statements, each breaking the same record up in different ways.

Each redefining FIELD statement must reference the same file number. The
string variables defined in the FIELD statement may not duplicate each other
or any other variables used in FIELD statements or ordinary string variables in
the program.

If you simply want to skip a group of characters, you can use SPACE$ as the
string variable name. This name (which is also the name of a function) may
be used as many times as you like, and doesn’t count toward the maximum
number of variables (10) you can define in a single FIELD statement.

You can have up to 40 FIELD statements in any program.

Examples:

FIELD #2, 10 AS a$, 30 AS name$, 30 AS address$
FIELD #2, 10 AS SPACE$, 15 AS first$, 15 AS last$
FIELD #2, 70 AS SPACE$, 40 AS comments$

The first statement defines 3 fields. The second redefines name$ as first$ and
last$. The third skips over the first 70 characters and defines the next 40 as
comment$.

Reading From a RANDOM file.

You can read any existing record from the RANDOM file into the buffer with the
statement:

 GET #file-num, record-number
 .
The contents of the file at the desired position are transferred to the buffer. Exactly
the record length is transferred, regardless of what is in the file record – if the record
terminates prematurely, the remainder is padded with blanks. The existing buffer
contents are over-written.

Note: If you try to GET a record that is beyond the end of the file, an error will occur.

Once the record has been read into the buffer, you may access its contents by:

an INPUT # statement, to read selected variables,
a LINE INPUT # statement, to get the entire record (if possible),
using FIELD variables (see above).

Field [string] variables may be assigned to other variables, printed, used in
functions, or anywhere strings are used (exceptions are the MID$ and SWAP
statements. When a field variable is referenced, the entire length (including
padding blanks) is used.

Reading the buffer using INPUT # works similarly to INPUT # for sequential
files, except that reading does not continue beyond the end of the buffer and
attempting to do so will cause an error. You can use the INPUT # function to
test if any data remains before attempting to read it. You can have more than
one INPUT # statement, which will continue reading where the first one left
off, provided there is data remaining in the buffer. After a GET, the pointer is
reset and an INPUT # statement will again start at the beginning of the buffer.

You can intermix INPUT # statements with the use of field variables.

Random File Example:

1000 // Sample Check Register Using Random File
1010 data 1000 // start balance
1020 data -25.40, 100, -16.65, -35.82, -99.95, -10, -35.17
1030 data 195.00, -30.95, -25.50, -123.40, -89.99, 50.00
1040 open random,2,"register.data",60
1050 field #2, 30 as descr$, 10 as deposit$, 10 as check$, 10 as

balance$
1060 recnum = 1
1065 descr$ = "Item:": rset check$ = "Check:":
1070 rset deposit$ = "Deposit:": rset balance$ = "Balance:"
1080 put #2, recnum
1090 recnum = recnum + 1
1100 read bal
1110 print #2 : // blank the buffer
1120 b$=str$(bal, "####.##")
1130 rset balance$ = b$
1140 descr$="Starting balance"
1150 put #2, recnum
1160 recnum = recnum + 1
1165 chknum = 1
1170 while read(2) > 0
1180 read chk
1190 write #2
1200 if chk > 0 goto 1240
1210 descr$ = "Check #" + str$(chknum, "###")
1220 rset check$ = str$(-chk,"####.##")
1225 chknum = chknum + 1
1230 goto 1260
1240 descr$ = "Deposit"
1250 rset deposit$ = str$(chk,"####.##")
1260 put #2, recnum
1270 recnum = recnum + 1
1280 wend
1290 recs = recnum
1300 // calculate running balance
1310 recnum = 3
1320 while recnum < recs
1330 get #2, recnum
1340 bal = bal - val(check$) + val(deposit$)
1350 rset balance$ = str$ (bal, "####.##")
1360 put #2, recnum
1370 recnum = recnum + 1
1380 wend
1390 // print
1400 recnum = 1
1410 while recnum < recs
1420 get #2, recnum
1430 line input #2, line$
1440 print line$
1450 recnum = recnum + 1
1460 wend

Output

Item: Deposit: Check: Balance:
Starting balance 1000.00
Check # 1 25.40 974.60
Deposit 100.00 1074.60
Check # 2 16.65 1057.95
Check # 3 35.82 1022.13
Check # 4 99.95 922.18
Check # 5 10.00 912.18
Check # 6 35.17 877.01
Deposit 195.00 1072.01
Check # 7 30.95 1041.06
Check # 8 25.50 1015.56
Check # 9 123.40 892.16
Check # 10 89.99 802.17
Deposit 50.00 852.17

Using FIELD statements with String Variables.

Just as FIELD statements can be used to map or define random-access file buffers,
they can also be used to map string variables, which also permits their use with
sequential files if you use LINE INPUT # to read the file.

In this way, you can lay out a report line before printing it, or pick apart an input line.
Specify

FIELD string-var-name, width AS string-var, …

where string-var-name specifies the name of the string variable you wish to re-define
in the same manner as with random-access file buffers.

Note: string-var-name may not specify an array or array element. If you
dimension an array called string-var-name it will cause an error.

Note: A field may not extend beyond 255 characters from the start of the
string variable.

FIELD statements are processed before the program is run, so the variable referenced
in string-var-name will not be defined until the program is run. You can also use the
string anywhere else string variables are used.

References to the fields will reference or change the contents of the string. Retrieving
data beyond the end of the string will result in blanks. Setting data into fields beyond
the current end of the string will cause the string to be lengthened and padded with
blanks. Unlike random-access file buffers, there is no error in these cases.

Keep in mind that the fields may have trailing blanks. The length of the field string
will be the length as defined in the FIELD statement.

Note: Each time you lengthen a string, additional string storage is used, so it is more
efficient to start with the string at its ultimate maximum length. Either set the
rightmost field first or initialize the string with blanks (with the SPACE$ (n) function).

SERIAL “Files”

Technically, serial communication is not a file operation, however it is implemented
within QuickCalc BASIC using the same statements and functions as are used with
files.

This kind of serial communication is “records” (i.e., strings) rather than bytes, and
operates in one direction at a time. You can send a string, and you can receive a
string, just not simultaneously. Although data can travel in both directions through
the serial cable (or USB cable), the data is sent using the PRINT # or WRITE #
statements and received with the INPUT # or LINE INPUT # statements, so you must
complete one statement before executing another. You can’t “monitor” a line for
bytes as is done in a terminal emulator program (like Hyper Terminal).

Basically, this works by sending a message and then waiting for a reply. It is
intended for communicating with a micro-controller (such as an Arduino) which has a
similar function built into it. Using this type of communication, you can turn an
Arduino with a sensor into a computer-controlled automated test device, controlling
what is to be measured and returning the data for printing, analysis and/or plotting.

Opening a Serial File

You open a SERIAL file the same as a sequential or random file, using the OPEN
statement with a few extra parameters:

OPEN file-mode, file-num, file-specification [, record-size [, baud-rate [, parity

[, stop-bits]]]]

file-mode must be SERIAL,

file-num must be an available file number, not already open, similar to

standard files.

file-specification must refer to an available and active COMM port, which

may be a USB port with the appropriate device driver assigned
to a COMn port ID. You may hard code it, (e.g., "COM2"),
use a string variable containing the port ID, or use the function
BROWSECOMMPORTS$.

record-size is at least the size of the longest message you will send or

expect to receive.

baud-rate is the speed of the data communication. The default is 9600

baud. The selected value must match the baud-rate setting of
the device with which you are communicating.

parity is used for error-detection. The default is no parity checking,
which works well for short lines at moderate speed. It must
match the parity setting of the device with which you are
communicating.

This value must be a string constant (in quotes) or string
variable. Allowable values are: "NO", "ODD", "EVEN",
"MARK", or "SPACE".

stop-bits is the number of stop bits used following each character. This

is a numeric value. Allowable values are: 1, 1.5, or 2. The
default is 1. It must match the stop bits setting of the device
with which you are communicating.

OPEN may also be used as a function, returning an error code, similar to ordinary
files.

Note: An OPEN may be successful and still the communication may not
work, if the settings do not match the external device.

Sending Serial Messages

Messages are sent using the PRINT # and/or WRITE # statements. This is similar to the
way it is done with regular files, with a few exceptions.

Each PRINT # or WRITE # statement sends one line of data through the serial port.

If a PRINT # or WRITE # parameter list ends in a semi-colon, you must issue at least
one more to complete the line. Nothing is sent until the line is complete.

If you exceed the buffer size, it will cause an error and terminate the program. Data
will not “wrap around” to the next message.

Do not include C/R or l-f (new-line). A new-line character will be appended to the
message when it is sent out and [hopefully] stripped off when it is received by the
external device. An extra new-line character at the end may cause a second “empty”
message to be sent. [The new-line character which terminates a string will not be
sent.]

If you wish, you can format a string using any of the available statements, including
FIELD, LSET, RSET, MID$, etc., etc. (see above) and then send it using a single PRINT
statement (e.g., PRINT #2, string-var$). Just don’t exceed the buffer size.

Remember, a string may be up to 255 characters. A data record sent could be
longer if you print more than one string, however you would not be able to
read it back with LINE INPUT #.

Receiving Serial Messages

Serial messages are read using the INPUT # and/or LINE INPUT # statements. Again,
this is similar to regular file operations, with a few exceptions:

Serial operations can time out. If the [complete] message is not received after 5
seconds, you will get an error which will terminate the program.

To avoid time-outs, you should not issue the INPUT # or LINE INPUT # until
you know a message is waiting. You can use the INPUT function to determine
this:

100 ready = INPUT (file-number)
if ready = 0 then goto 100 // loop until message is ready
INPUT # file-number, list-of-variables

You must get all the data from the input message in a single INPUT # or LINE INPUT #
statement. Another INPUT # or LINE INPUT # statement will initiate another serial
read, which will throw away the buffer contents , and more importantly, cause a new
read which could cause a time out error.

If you want to pick apart the message or interpret it in more than one way, use
the LINE INPUT # and then operate on the returned string.

Extra data items that are not assigned to variables will be ignored. Extra variables in
the INPUT # statement (for which no data values appear) will not be changed. No
error messages are generated in either case.

A good way to handle this is to read the entire line into a string with LINE
INPUT #. Then parse the string any way you like to extract the data.

Serial Protocol

Of course, you may define your own set of rules for sending/receiving messages, but
here are some of the things which I have found to be important.

There should be a one-to-one correspondence between incoming and outgoing
messages. It should be a command-response protocol.

If the computer requests data from the external device and the data is not ready yet,
the device should return a “not ready” message. Otherwise, the computer may have
to wait and can get “hung up” waiting. The computer can keep requesting data, and
eventually get a positive response. Also, the computer should be able to send a

“cancel request” message, to which the device should respond “OK” after cancelling
the operation.

The important thing is that the two machines must not get “out of sync”, which is
why it is best to send one message and get one response.

It is possible to send one message and get 2 responses, but you must expect
and attempt to read that second response and not send another message until
you have received it.

One technique for receiving multiple messages is to watch for messages inside
a loop, and keep receiving messages until the device sends an “end” message.
Of course, if the “end” message never arrives, you will loop forever.

It is best to keep the data format fixed and simple. Always send and expect the same
number of data items as a response to each type of request.

New-Line characters (hex 0A or '\n') are a “no-no’. Don’t include them in any
message in either direction. The Serial communications routines in the PC and the
external device append them to messages and strip them off on receiving them. An
extra new-line character could prematurely end the message, or cause the system to
think that more than one message had been received. This would cause the protocol
to get out of sync.

In the remote device, don’t send a partial message if there may be some time elapse
before the rest of it is sent. For example, "The answer is: " [pause while we compute
it] "3.15159". The delay could cause a time-out to occur. Wait until the data is all
available before sending the first part of the message.

Communicating with an Arduino micro-controller.

I have tested these routines with the Arduino Mega2560 and Nano boards. It should
also be compatible with the Uno and similar boards from other manufacturers.

In the Arduino Sketch

Receive the incoming message.

Use something like:

int get_serial_line ()
 {
 int count;
 while (!Serial.available ());
 count = Serial.readBytesUntil ('\n', line, 50);
 line [count] = '\0';
 return count;
 }

It is important to read the entire line before sending an outgoing message.

Sending messages:

Use Serial.print and Serial.println.

Serial.print prints part of the line. You must end it with a Serial.println

In the PC (Basic Program)

Don’t include C/R or l-f characters in the sent messages.

Send one message, then read a response.

Example:
 PC: Get Sensor Data
 Arduino: OK
 PC: Sensor Data Ready?
 Arduino: NO

 (brief wait and repeat until data is ready)

 PC: Sensor Data Ready?
 Arduino: YES
 PC: Transmit Sensor Data
 Arduino: 1.23456

The idea is that one message = one response. No long waits.

It is also a good idea to have some kind of “cancel” message which the
Arduino can listen for. This would clear any ongoing process and wait for the
next command.

Example:

PC: Get Sensor Data
Arduino OK
PC Sensor Data Ready?
Arduino NO

(after retrying for a reasonable time)

PC Cancel
Arduino OK

Receiving Data:

Use the INPUT () function to see if a message is ready, then use
INPUT # or LINE INPUT # to read it.

Example:

OPEN SERIAL, 2, "COM5", 80, 9600, "no", 1
PRINT #2, "outgoing-message" // send request for data
100 msg_avail = INPUT (2)
IF (NOT msg_avail) GOTO 100 // loop until message avail
LINE INPUT # 2, input_line$ // read the returned message

Sent data:

Use PRINT # or WRITE # statements. If PRINT # or WRITE # parameter
list ends in a semi-colon, you must issue at least one more to complete
the line.

If you exceed the buffer size, it will cause an error. Data will not
wrap around to the next message.

If you are waiting for an input message, don’t send another output
message until after you have received it. If you think your message
got lost, first issue an INPUT () function, and then send your output
message. In this case, the Arduino will need to have a protocol
established to deal with unexpected messages (like “cancel”).

Do not include C/R or l-f (new-line). A new-line character will be
appended to the message when it is send out and [hopefully] stripped
off when it is received by the Arduino.

The Arduino File Transfer Program.

As an example of Serial file usage, plus other QuickCalc BASIC features, I
have written a program to transfer files to and from an Arduino with an SD
card, using the same serial port that is used to upload the programs to the
Arduino. This program, and the associated Arduino sketch, are included with
the Sample Programs. Compile and upload File_Transfer.ino to the Arduino,
make sure the serial cable is connected, and run File Transfer.txt in QuickCalc.

The file transfer is slow (noticeable for larger files) mostly because the
Arduino SD card reads and writes data one byte at a time. However, for
smaller files, it is quicker than removing the SD card and connecting it to the
PC, especially when the SD card is not easily accessible.

BINARY Files.

BASIC generally works with ASCII text file format. It is line-oriented. A
line is a string of characters, generally terminating with a carriage-return (C/R
or hex 0D) and line-feed (l-f or hex 0A). The C/R is optional.

Because the file data must be able to be read into character strings, the records
must not contain “null” characters (hex 00) and may not have C/R or l-f
embedded in the records. If a BASIC program attempts to read a file that
violates these restrictions, errors can occur and data may be lost.

Normally, for simple BASIC programs, these restrictions do not present a
problem. Sometimes, however, you may want to read a file which contains
binary-formatted data such as image files, executable files, zip files, database
files, files containing floating-point encoded data, etc. QuickCalc provides a
way for you to read and write these files.

The BINARY File Types.

You identify binary files by giving them the type “INPUT BINARY” or
“OUTPUT BINARY” in the OPEN statement or function”

OPEN [INPUT BINARY | OUTPUT BINARY], file-num, file-spec, record-
length

This is similar to the way ordinary text files are specified, except for the new
file types.

Note: The keywords INPUT BINARY and OUTPUT BINARY must contain

exactly one space between the words.

The record-length field is NOT optional for binary files. It specifies the
maximum number of characters to be read from or written to the file, and
must not be greater than 127.

Input and Output Translation.

Data from binary files is read or written as a block. There is no logical record
delimiter. It reads exactly the number of bytes specifies, including nulls, l-f,
C/R, etc. The last block read from the file may be smaller.

Since the data must be read into a string variable, the “forbidden” characters
are translated into escape sequences as follows:

 C/R (‘0D’) is replaced with \r
 l-f (‘0A’) is replaced with \n

 null (‘00’) is replaced with \0
 quote mark is replaced with \”

The resulting block is now a valid character string. It is terminated with a null
character and assigned to a character string. You may then parse it or pick it
apart using the various BASIC statements and functions.

Note: The resulting string, after translation, may be up to twice as long as

the original. That is the reason for the length restriction of 127. The
translated string must be less than 256 to fit into a BASIC string
variable.

When a string variable is written to a BINARY file type, the reverse
translation is applied. The terminating null character is not considered part of
the data. The resulting block, after reverse translation, may have fewer bytes
than the translated string. The exact number of bytes in the reverse-translated
block is what will be written to the file.

The translation and reverse-translation is performed for you automatically as
you read and write the data.

Note: A translated string may be sent and received using a SERIAL file (see

above). This provides a way to send and receive binary data. The
device at the other end of the transmission must translate the data
back.

Reading and Writing BINARY Files.

Binary files are read using the LINE INPUT # statement. The data must be
assigned to a string variable.

 LINE INPUT #file-num, string-var$

The ordinary INPUT statement is invalid with BINARY file types.

The resulting string variable will contain translated character sequences. It
may also contain non-printable characters, tab characters, control characters,
etc. Printing this data to a printer will probably not work.

If, after reading the line, the length of the string variable is zero, it means you
have reached the end of the file.

Binary files are written using the PRINT # statement:

 PRINT #file-num, [string-var$ | "string-constant"]

The string variable or constant must have the substitutions listed above to
make it “legal”. If you read the string from a binary file as described above, it
will be legal. If it is a quoted string which you built from other data, you must
make those substitutions yourself before “printing” it.

A Simple File Copy Program

OPEN INPUT BINARY, 2, “input-file”, 127
OPEN OUTPUT BINARY, 3, “output-file”, 127
100 LINE INPUT #2, x$
IF LEN (x$) = 0 then GOTO 200
PRINT #3, x$
GOTO 100
200 CLOSE 3
CLOSE 2

The above program should create an exact duplicate of the input file. Just
before the PRINT statement, you could modify the string to change the data
any way you like (as long as it remains “legal”)

