

Computing the Arctangent

(in a reasonable amount of time)

by

Mark C. Hendricks, Ph.D.

Copyright © October 16, 2009
(Revised, May 19, 2011)

Abstract:

The arctangent function, although easy to calculate, has historically been very slow to
converge, especially near its limits of ±1. This has led to many complex methods to calculate
π = 4 arctan (1), due to the slowness of the arctangent function. This paper will demonstrate
a new technique for calculating the arctangent function for long-precision numbers with
greatly improved speed – around 1 second for 10000 digits over the entire range of the
function.

Computing the arctangent (in a reasonable amount of time)

The arctangent can be calculated using the formula:

�+−+−=
753

arctan
753 xxx

xx for |x| ≤ 1 (1)

This series, although accurate, converges very slowly for all but extremely small numbers.
For most of the area of interest, the computation time is ridiculously long, becoming quite
large as x approaches 1 (see table 1, below).

Table 1. Time to calculate arctangent of a 10000-digit number to 10000 digits.

x time x time x time

.00122222… 13.3 sec. .01222222… 20.3 sec. .11111111… 40.6 sec.

.00322222… 15.5 sec. .03222222… 26.0 sec. .31111111… 76.3 sec.

.00522222… 17.0 sec. .05222222… 30.2 sec. .51111111… 132.8 sec.

.00722222… 18.1 sec. .07222222… 33.9 sec. .71111111… 261.3 sec.

.00922222… 19.0 sec. .09222222… 37.4 sec. .91111111… 958.1 sec.

These times are shown in Figure 1, curve (1).

The computation time increases with the number of digits in x, and with the precision to
which we compute the arctangent. In this paper, we will be dealing with numbers with a
length of 10000 digits and computing arctangents to 10000 digits.

Our goal is to get the computation time down to approximately one second for all values of x,
with a floating point length of 10000.

Increasing Computation Speed.

The power series converges more quickly for short numbers (the smallest group we can
handle is 8 digits), and for small numbers (numbers with many zeros following the decimal
point). In the ideal case, we could split x into two parts, one short and one small, e.g.,
.1234567890123456789012… = .12345678 + .00000000901234567889012…

Unfortunately, the formula for computing the sum of two arctangents does not directly give
the arctangent of the sum. The formula

�
�

�
�
�

�

−
+=+
uv
vu

vu
1

arctanarctanarctan (2)

does not give the results we want. However if we let x = �
�

�
�
�

�

−
+
uv
vu

1
 in equation (2), and solve

for v, we get

.
1

�
�

�
�
�

�

+
−=
xu
ux

v (3)

Re-writing equation 2, we obtain

x
xu
ux

u arctan
1

arctanarctan =�
�

�
�
�

�

+
−+ . (4)

This gives us the result we are looking for, which is a way to compute the arctangent of a part
of the argument [u] and another [much smaller] part [v, from equation (3)], and sum them to
get the arctangent of x. Note that the long division involved in calculating v must be carried
out to at least the desired floating-point length.

Example 1.

To illustrate the value of this technique, let u = the first 8 digits of x, and evaluate equation
(4):

x = .1234567890123456789012…
u = .12345678

.
12345678....1212345678901234567890.1
...1212345678900000000090.

arctan)12345678arctan(.arctan �
�

�
�
�

�

×+
+=x

While this appears more complicated and does involve one long division, the result can be
computed in much less time, because:

• u is short (only 8 digits), so arctan u will compute faster,
• v is much smaller and will converge much faster.

Assuming x has 10000 significant digits, arctan x will compute in 5.28 seconds, as compared
to 42.6 seconds doing it the old way, and this includes the time for the long divide:
 Time to compute arctan u .373 sec
 Time to compute v (long divide) .076 sec
 Time to compute arctan v 4.810 sec
 Total 5.283 sec

Curve (2) of Figure 1 shows the time improvement using this method.

The accuracy is the same (10000 digits) but the time has been shortened by a factor of 8. The
time, over 5 seconds, is still too long.

Repeating the process

In the above example, the time to compute arctan v is the largest portion of the total time. It
turns out that that time is nearly constant over the entire range of the function [the time to
compute arctan u will be addressed later].

If we were able to shorten the time to compute the entire arctangent by splitting the number
into two parts, could we apply the same process to compute arctan v? The answer is yes.
The process may be repeated several times, with varying degrees of improvement.

If we define x1 = v, from equation (3), choose a new u1 and define v1 according to equation
(3), then substituting into equation (4) we get

111 arctanarctanarctanarctan vuxv +== , or

vx
ux
ux

u arctanarctan
1

arctanarctan 1
11

11
1 ==��

�

�
��
�

�

+
−+ . (5)

Now we know that v is <.00000001 (has at least 8 leading zeros). If we choose u1 to be the
first 32 digits of v, u1 will also have 8 leading zeros and be 32 digits long. This will converge
faster than arctan v, and the new v1 will have at least 32 leading zeros.

Example 1 (continued)

Continuing with the example above, let u1 = the first 32 digits of v, and calculate the arctan of
u1 and v1, adding the results together and with the arctan u. The time now looks like :

 Time to compute arctan u .377 sec.
 Time to compute v (long divide) .076 sec.
 Time to compute arctan u1 .091 sec
 Time to compute v1 (long divide) .069 sec
 Time to compute arctan v1 1.191 sec
 Total 1.806 sec

The time to compute v, v1, arctan u1 and arctan v1 are nearly constant at about 1430 msec
throughout the range of numbers.

Curve (3) of Figure 1 shows the time improvement using 2 steps of this process (3 partial
arctangents).

How Far Can We Go?

The process can be repeated as many times as you like, but after about 4 iterations, or 5
partial arctangents, the time increase due to the extra vn calculation exceeds the time saved by
breaking up the arctangent calculations.

The break points can be set anywhere as long as they are multiples of 8, the digits in one
“block”. Breaking the number again after n2 digits gives a u2 with 32 leading zeros and a
length of n2, and so on. The optimum break points were determined by experiment to be 8,
24, 96, and 400. (see Table 2.)

Table 2: Break points for arctangent calculation.

term
number

break
point

length of
v

leading
zeros in v

significant
digits in v

1 8 8 0 8
2 24 24 8 16
3 96 96 24 72
4 400 400 96 304
5 (max) 10000 400 9600

Example 1 (conclusion)

Using the breakpoints given above, the results are:

 Time to compute arctan u .379 sec.
 Time to compute v (long divide) .076 sec.
 Time to compute arctan u1 .069 sec
 Time to compute v1 (long divide) .069 sec
 Time to compute arctan u2 .075 sec.
 Time to compute v2 (long divide) .069 sec.
 Time to compute arctan u3 .067 sec
 Time to compute v3 (long divide) .070 sec
 Time to compute arctan v3 .099 sec
 Total .974 sec

Curves (4) and (5) of Figure 1 show the improved times for 4 and 5 partial arctangents.

The 5-step process yields results under one second for x < 0.2. The largest variable
remaining is the time to compute arctan u. As u approaches 1, this time can still become
large -- as much as 11 seconds for u = 0.9.

What can we do about the first term?

Once again, we bump up against the problem that the arctangent converges very slowly as x
approaches 1. No matter what we do to the rest of the number, we can’t split u1 up that way,
and even if we could, there would be no improvement since the first part of the
Term would still be very close to 1.

However, there is another way to force the value of x to be in a reasonable range. Looking
again at equation (4), if u is 0.1, then

�
�

�
�
�

�

+
−+=

x
x

x
1.01
1.0

arctan1.0arctanarctan (6)

If we calculate �
�

�
�
�

�

+
−=

x
x

v
1.01
1.0

,

then v is closer to zero (and farther from 1) and will converge faster.

The number 0.1 was chosen by balancing the additional overhead of recalculating vn against
the time saved by reducing the argument by the arctangent of that number. Also, arctan 0.1
is easy to calculate and converges quickly (about 200 msec) and we can use it multiple times,
as will be shown later.

We can apply the function repetitively: ��
�

�
��
�

�

+
−=

−

−

1

1

1.01
1.0

n

n
n v

v
v , and eventually end up with a vn

that is less than 0.1. This will require several long divides at about 72 msec each, but will
leave us with a number less than 0.1 to calculate as shown in Example 1. The final result
will need to have arctan 0.1 added in as many times as we subtracted 0.1 (and adjusted) to
reduce vn to less than .1. The add back takes, typically, about .05 msec. This process will
have no effect on numbers < .1

In the example, if we first apply the procedure of adjusting the number by subtracting
arctan .1, the total time becomes 1079 msec. However that includes the 200 msec to calculate
arctan .1, which only needs to be done once and is saved for future arctangent calculations.
Excluding that number, times for various numbers between .1 and 1 become:

0.123457… 879 msec
0.223457… 977
0.323457… 1022
0.423457… 1011
0.523457… 1232
0.623457… 1259
0.723457… 1285
0.823457… 1421
0.923457… 1416

These results are shown on Figure 1, curve (6).

These times are, at least, well-behaved in the vicinity of x=1, and are far closer to our goal of
one second. Remember, all arctangents are carried out to 10000 digits, and all values of x
here are 10000 significant digits long.

Reducing the argument in one step.

The problem with the above approach is that the value x has to be reduced up to 7 times,
depending on how close it is to 1. Each reduction adds about 80 msec to the computation
time. In this section, I will show how that can be done in one step.

We would like to obtain a set of numbers wn between .1 and 1, whose arctangents are known
without having to calculate those arctangents. Then equation (6) could be re-written as

��
�

�
��
�

�

+
−+=

n

n
n xw

wx
wx

1
arctanarctanarctan .

If wn is close to (but still less than) x, we can calculate

��
�

�
��
�

�

+
−=

n

n
n xw

wx
v

1
arctan in one step.

The following shows how we determine the values for wn.

Recalling equation (1) for the sum of two arctangents,

�
�

�
�
�

�

−
+=+
uv
vu

vu
1

arctanarctanarctan , (1)

let
uv
vu

w
−
+=

1
 , then

wvu arctanarctanarctan =+ (7)

Now if we assume that u and v are rational numbers, such that
b
a

u = and
d
c

v = ,

then �
�

�
�
�

�

−
+=

�
�
�
�

�

�

�
�
�
�

�

�

−

+
=

acbd
bcad

bd
ac
d
c

b
a

w
1

.

So w is also a rational number.

Equation (7) becomes

 �
�

�
�
�

�

−
+=�

�

�
�
�

�+�
�

�
�
�

�

acbd
bcad

d
c

b
a

arctanarctanarctan (8)

. If we define

e = ad + bc (8a)
f = bd – ac (8b)

then e and f are both integers and w=e/f is a rational number. Equation (8) can be written as

 ��
�

�
��
�

�
=�

�

�
�
�

�+�
�

�
�
�

�

f
e

d
c

b
a

arctanarctanarctan . (9)

Since we have already calculated arctan (.1), we would like to have arctan wn be a multiple of
arctan (.1). In other words, we want to find wn such that

()1.arctanarctan ×= nwn (10)

It follows that
() ()1.arctan1arctan 1 ×−=− nwn

() () ()1.arctan11.arctanarctanarctan 1 ×−−×=− − nnww nn
()1.arctanarctanarctan 1 =− −nn ww

)1arctan(.arctanarctan 1 += −nn ww (11)
Substituting wn = en / fn

 �
�

�
�
�

�+��
�

�
��
�

�
=��

�

�
��
�

�

−

−

10
1

arctanarctanarctan
1

1

n

n

n

n

f
e

f
e

 (12)

If we let

a = en-1

b = fn-1
c = 1
d = 10

then according to the definitions (8a and 8b) we can calculate en and fn

110 11 ×+×= −− nnn fee

1110 −− +×= nnn fee (13)

110 11 ×−×= −− nnn eff

1110 −− −×= nnn eff (14)

Starting with e1 = 1 and f1 = 10 (that is, w1 = .1), we now calculate en and fn using equations
(13) and (14) for the first 7 values, which are shown in table 3, below.

Table 3.

n en fn wn = en/fn

(approx)
1 1 10 .100000000
2 20 99 .202020202
3 299 970 .308247422
4 3960 9401 .421231783
5 49001 90050 .544153248
6 580060 851499 .681222174
7 6652099 7934930 .838331151

The values for wn are intentionally kept as rationals (en/fn) in order to avoid calculating them
to high precision.

The values of en, fn and wn are pre-calculated and stored in a table in the program. wn is only
stored to 8 digits.

There is no need to go beyond n = 7, since the value of wn would then be greater then 1.

From equation (4) we get

arctan x = arctan wn + arctan v, where

�
�
�
�

�

�

�
�
�
�

�

�

+

−
=��

�

�
��
�

�

+
−=

n

n

n

n

n

n

f
xe
f
e

x

xw
wx

v
11

nn

nn

xef
exf

v
+
−= (15)

Substituting ()1.arctanarctan ×= nw n , we get

()1.arctanarctanarctan ×+= nvx (16)

where v is calculated from equation (15).

The process then becomes:

1. Choose the largest value of wn (from the last column in table 3) which is less than x,

2. Calculate arctan v = ��
�

�
��
�

�

+
−

nn

nn

xef
exf

arctan , (17)

3. Add arctan (.1) n times.

It can be shown (see below) that v is < .1, whose arctangent will calculate quickly,
somewhere around 900 milliseconds.

In step 1, it is only necessary to compare the first 8 digits. Any error would simply change
the value of x where we switch to a different n. This would affect the point where the timing
improves, but would not affect the accuracy of the calculation.

Note that en and fn are integers less than 8 digits, which means that the numerator and
denominator of equation (17) can be calculated with a quick short (8-digit) multiply and
addition or subtraction. Only one long division is required.

Proving that v < .1

If n is chosen from table 3 such that wn < x < wn+1, then

nn

nn

n

n

ef
fe

f
e

x
−
+==

+

+

10
10

1

1
max

nn

nn

exf
efx

v
max

max
max +

−=

n

nn

nn
n

nn
nn

nn

e
ef
fe

f

ef
ef
fe

−
++

−
−
+

=

10
10

10
10

() ()
() () nnnnnn

nnnnnn

efeeff
efefef

++−
−−+=

1010
1010

nnnnnn

nnnnnn

feefef
efeffe

++−
+−+= 22

22

1010
1010

()
() 10

1
10 22

22

=
+

+=
nn

nn

ef
ef

Example 1 (Extra Credit)

Applying the procedure described above to reduce the value of x to something less than 0.1,
and using the 5-step arctangent calculation, the times are now kept near or below 1 second
for all values of x. The final results are shown in Figure 1 curve (7).

10

1.0

.1

100

1000
Time in seconds

.001 .01 .1 1
x

2

3

1

4

5

6

7

Figure 1 - Time to Compute Arctangent of 10000-Digit Number to 10000 digits

Speed for other lengths

The calculations in this paper have been done at lengths and precision of 10000 digits.
Time for these calculations is on the order of (digits)2. So, based on that knowledge and
some experimental results, you can expect the following:

digits Arctan time
(expected)

Arctan Time
(measured)

100 100 µsec 150 µsec
500 2.5 msec 2.6 msec
1000 10 msec 10 msec
5000 250 msec 230 msec
10000 1 sec 1 sec
20000 4 sec 4 sec
50000 25 sec 35 sec
100000 100 sec 200 sec

These routines were optimized for 10000 digits. At around 100, the overhead due to
copying, allocating, freeing, initializing, etc., becomes significant compared to the time
dividing and evaluating power series. Still, the numbers are quite impressive.

At 100000, the improvement from breaking the number apart could benefit from another
breakpoint and a sixth partial arctangent. Setting the 5th breakpoint to 4000 brings the
total time for 100000 down to around 120 seconds, and for 50000 down to 30 seconds.

This suggests that a truly optimized routine might have to dynamically set the
breakpoints based on the length of the number. There is always room for improvement.

What about arctangents of numbers > 1, or negative numbers?

There is nothing new about those processes.

Numbers greater then 1 will not converge using the power series, however, we can use
the identity

x
x

1
arctan

2
arctan −= π

to calculate the complement of the angle and then subtract it from π/2. This adds about
80 milliseconds for the long divide, and assumes you have already calculated π, which
takes about 600 milliseconds for a length of 10000. Very large numbers will lose
precision because that means subtracting a very small number from π/2, and it will not be
possible to regenerate the original number to full precision using the tangent function.

The arctangent of a negative number is the negative of the arctangent of the absolute
value of the number, so we calculate the arctangent of the positive value and change the
sign at the end.

Notes on Programming Techniques

Long numbers are maintained in a format which places 8 decimal digits in binary in a 32-
bit word, or “block”. Some assembler-language routines are used to allow multiplication
and division on these 32-bit words. Fast long multiply and divide routines are used
which take advantage of this 32-bit arithmetic, and when possible, 32-bit integer
multiplication or division is used.

Calculation is done at a precision of 8 longer than the floating-point length. Conversions
required in order to reduce the argument to a number which converges more quickly
could introduce round-off errors, so the extra precision takes care of that. If the angle is
required in degrees, then it must be multiplied by 180/π. This calculation is also done at
the precision of 8 extra digits, before rounding to the desired length. Power series
calculations are done with an additional 10 digits of precision (rounded up to the next
“block” of 8).

Timing measurements are done using the Windows functions:

QueryPerformanceFrequency () and QueryPerformanceCounter (),
which allow timing on the order of the system clock, although operating system overhead
often makes it difficult to get consistent results. The timing measurements are mostly
used to determine which parts of the process are consuming the most time, and to assess
overall performance.

Power series calculations are performed using a fixed number of digits to the right of the
decimal point. This can result in a loss of precision if the argument contains many leading
zeros, so for such numbers the length of the calculation is extended by the number of
leading zeros. Numbers containing more leading zeros than half the floating-point length
will see no 2nd term in the expansion, and so arctan x is just x.

Reference Computer

The computer used for these tests is a Sony VGC-RB40 with a 3.0 GHz Pentium D
processor and 1 GB of memory, running Windows XP. No other programs were running
during the timing tests. The program does not take advantage of dual-processor support.
Other computers will, of course, get different results, but the speed will be proportional to
your processor clock speed. A processor with 32-bit arithmetic is required.

Conclusion

This paper has demonstrated how the arctangent, normally a very slow-converging
function, may be calculated in a much shorter time using the processes described, with no
loss of accuracy. Calculation times of around 1 second for 10000 digits have been
achieved over the entire range of the function.

Although the code may not port directly to other types of computers, the techniques
described here could be adapted to speed up calculation on any platform.

