

Debugging.

QuickCalc BASIC provides several tools to help you figure out why a program is crashing, looping, or
otherwise not running as you expected.

Canceling a program which appears to be in a loop.

Press the Kill Program button to end the program. Do not exit QuickCalc with a BASIC
program still running. In CONSOLE mode, typing control-c will exit the program and
terminate QuickCalc.

Normally, the Kill Program button stops the program at the conclusion of the current
BASIC statement. For LONGMATH operations with very long floating-point lengths, the
program may appear to be in a loop but actually be doing a very long calculation.
Operations at 1 million digits could take hours. These operations are interruptible with
the Kill Program button, which will end the program after approximately 0.1 second
without completing the current operation.

Stepping through the Program.

For a long-running program, you can break into the program, pausing it, by clicking on
the Step button. (GUI mode only). This places the program into “stepping” mode.
Subsequent clicks of the Step button will execute one statement at a time,
showing the results of assignment statements. When you are done stepping
through the program you may let it run by clicking the Continue button, or kill it
by clicking the Kill Program button

To start a program in stepping mode, select the program in the Source Program window,
then click Run/Step. The program will execute the first statement, then enter stepping
mode. In CONSOLE mode, type DEBUG STEP or STOP before running the program.

You may also start stepping at a specified location in the program by using the statement
STOP within the program. The program will begin stepping from that point until it ends
or you click Continue or type CONT.

One way of identifying where a program is looping is to run it until it appears to be in a
loop, and then interrupt it with the Step button. QuickCalc will tell you where your
program stopped by showing you the hexadecimal “offset” within the program. If you
type LIST, you can see where you are in the program by looking for that offset. You can
also step through a few statements to identify the program location (statement numbers
help here), and determine why the program is not exiting the loop.

Note that the Step button interrupts a program after the current BASIC statement. If you
are in the process of executing a LONGMATH function (like ATN, LONGPI, etc.), with a
very long floating-point length, it may still take some time before the program interrupts.

Often it is easier to debug a program using shorter length numbers, and then increase the
length to get your final results.

Note: If you are in stepping mode and you encounter a CHAIN statement, the next
statement executed will be the first statement in the chained-to program.

Entering commands while paused

The command line window is captioned “Stepping – Command” when the program is in
stepping mode.

When the program is paused (“stepping” mode”), you can enter commands and
statements from the command line window (end each line with <enter>).

Simply pressing <enter> is the same as clicking on Step.

Typing the CONT command is the same as clicking the Continue button.

Typing END is the same as clicking on the Kill Program button.

Typing STOP is the same as clicking on the Step button, except that you can’t do it while
the program is running. Do it before the program starts (CONSOLE mode) , or start the
program with the Run/Step button.

The STOP statement is the same as DEBUG STEP.

Some commands (such as RUN) are disabled in this mode. In order to execute these
commands, you must first run the current program to completion, or kill it.

You can change the flow of execution by setting variables to new values, or examine
variables with the PRINT or DEBUGPRINT statement. You can run pretty much any
BASIC command or statement, including compound statements, but be careful about
branching into or out of loops.

You cannot change the actual program while it is running. You need to end it and edit
the source file and then restart it.

Entering Data while Stepping

If you are in stepping mode and encounter an INPUT or LINE INPUT statement, the
command line will turn pink and you will be prompted to enter a line of data. The caption
on the command line will say “Stepping – Data:”. Clicking Step has no effect at this
time. You must type valid data and press ENTER in order to continue. After entering
the data you will still be in stepping mode, ready for the next command.

If you are not stepping and the program asks for data, the caption will say “Data:”. If you
want to enter stepping mode at this time, you may click the Step button and the program
will enter stepping mode and the caption will change to “Stepping – Data:”. You must
still enter data to continue. Stepping will begin as soon as the data is accepted.

Note: If you enter invalid data, the program will continue to ask for data until you type

it correctly. Then it will continue stepping.

Clicking Continue while you are in data mode will exit stepping mode and resume
running the program (after you have entered the data).

Debugging Tools.

It helps to have the Notepad window open with your BASIC program displayed as you
are debugging.

While you are in stepping mode, you may print the value of any variable(s) using the
PRINT (or ?) statement, or the DEBUGPRINT (or ??) statement.

The PRINTALL VARIABLES statement is a quick way to print all the currently-assigned
variables.

You may change the value of any variable with an assignment statement. This can force
the program to exit a loop. Do not GOTO a statement outside the loop.

Placing a STOP statement in a program will put you into “stepping” mode when the STOP
statement is encountered. You can type CONT or click the Continue button to resume
normal running.

You can place PRINT or DEBUGPRINT statements within your program to help identify
which routine you are in, or watch the value of certain variables. Examples:

PRINT “Now entering subroutine at 10000”
IF i > 50000 THEN PRINT “i > 50000”
IF a < 0 THEN PRINT “Warning: a is negative”

Tracing.

You may run the program in “Tracing mode”, which prints out the statements as they are
executed along with the results of assignment statements and conditional tests, such as
WHILE, FOR, and IF statements. The same information is printed as when you are running
in “Stepping” mode. The difference is that the program “free-runs” – you don’t have to
click Step or type <enter> after each statement.

In GUI mode, you can still pause the program while you are tracing, using the Step
button, and resume it using the Continue button. In CONSOLE mode, you don’t have the

STEP button, however you can click on the scroll bar and the program will pause until
you release the mouse button.

Tracing mode is turned on using the DEBUG TRACE command, and turned off using the
DEBUG TRACE, OFF command. These commands may be placed in your program to
trace only the suspect part of the program, or typed into the command line while the
program is paused (in “Stepping mode”). If you want to trace from the beginning of the
program, start the program in stepping mode, enter the DEBUG TRACE command, and
then Continue (or CONT). You could also place the DEBUG TRACE command as the first
statement in your program.

Note: Tracing generates a lot of console output. In GUI mode, everything is written to
the log file, however, in CONSOLE mode, the output scrolls off the screen buffer after a
while, and for that reason, you may have to take steps to limit the amount of tracing so
that you don’t lose important results.

Detail Debugging.

Timing

QuickCalc BASIC provides a timer for your use. You start it with the STARTTIMER
function, and end it with the ENDTIMER function, which returns the interval in
microseconds.

Timing includes the time for interpreting the BASIC statements and all system overhead

that occurs between the STARTTIMER and ENDTIMER function calls. For that
reason, it is not an accurate indication of the time required to do individual
mathematical functions (see below for DEBUG TIMER). It can, however, point up
the differences in speed between two different coding techniques, and help to
show which portions of your program are consuming the most time.

If you place a STARTTIMER function call inside a section of code which is being timed,

the second STARTTIMER will override and reset the timer, thus invalidating the
outer timing measurement. You can, however, use ENDTIMER more than once to
measure the time from a common start point to several different end points. Each
one will reference back to the STARTTIMER function call. Keep in mind that each
call to ENDTIMER uses up some time itself, which can throw off the total.

Example:

STARTTIMER
…. (lines of code to be timed)
microsecs = ENDTIMER
PRINT "The code took " ; microsecs ; " micro-seconds to process."

DEBUG TIMER:

This statement allows you to get timing for various LONGMATH functions. It
times the actual mathematical function, not counting overhead for BASIC
statement interpretation.

The format is: DEBUG TIMER, function [,OFF]

where function is one of the following:
ATN (also includes ACOT)
SQR
LONGPI
LONGE
SIN (also includes COS, TAN and COT)
EXP (also includes EXP10)
LOG (also includes LOG10)
ROOT
POWER (i.e., x ^ y)
MULT
DIV
FACTORIAL
MOD (also includes ‘%’)
HALF

Example: DEBUG TIMER, ATN turns on timing for ATN and ACOT functions.

The optional [,OFF] turns off timing for that function.

When a debug timer function is turned on, the message

“function calc. time: nnnn.nnn ms.”
appears following each execution of the specified function(s).

Note: Some functions call other functions, so you may get more than one

message if more than one timer function is turned on. For example, ROOT
calls LOG and EXP. This can give misleading results, since the outer
function time will include the time to format and print the timer message
for the inner function. It is recommended that you only turn on one timer
function at a time.

Note: The times for successive calls to a function may differ due to the fact that

some functions require calculating � (e.g., to convert from degrees to
radians) or LOG(10) (to convert between common and natural logarithms).
The first time these constants are required, they are calculated and saved.
Subsequent requests for the same or fewer digits will not require
recalculation and therefore the calling functions will execute faster.

