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Abstract: 
 
This paper addresses the mathematical equations for ellipses rotated at any angle and how 
to calculate the intersections between ellipses and straight lines.  The formulas for 
calculating the intersection points are derived, and methods are given for plotting these 
ellipses on a computer. 
 
In addition, techniques are shown for determining tangents to (rotated) ellipses, 
calculating the ellipse’s bounding box, and finding its foci. 
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Rotating Points 
 
First, we will rotate a point (x1, y1) around the origin by an angle α.   
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If the point (x1, y1) is at angle β from the x-axis, then  
 

βcos1 rx =  
βsin1 ry =  

After rotating the point by angle α, the new coordinates are 
 

( )αβ += cosrx  
( )αβ += sinry  

 
Applying the formulae for the sine and cosine of the sum of two angles, 
 

( ) ( ) αβαβαβαβ sinsincoscossinsincoscos rrrrx −=−=  
( ) ( ) αβαβαβαβ sincoscossinsincoscossin rrrry +=+=  

or 
αα sincos 11 yxx −=       (1a) 
αα sincos 11 xyy +=       (1b) 

 
If you rotate that point around a “center of rotation” at (e1,  f1), you get 
 

( ) ( ) 11111 sincos efyexx +−−−= αα     (2a) 
( ) ( ) 11111 sincos fexfyy +−+−= αα     (2b) 

 



Rotating an Ellipse 
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So if (x1, y1) is a point on the ellipse and (e1,  f1) is the center of the ellipse (see above 
figure), then equations (2) are true for all points on the rotated ellipse.  The “line” from 
(e1,  f1) to each point on the ellipse gets rotated by α. 
 
To rotate an ellipse about a point (p) other then its center, we must rotate every point 
on the ellipse around point p, including the center of the ellipse. 
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This is as if we put a pin in the graph at point p and rotated the entire sheet of paper 
around the pin. 
 
Here we are rotating the red ellipse centered at (e1 , f1) around point (p) by an angle α. 
 
So, for every point (x1, y1) on the original ellipse, the rotated point is  
 

( ) ( ) xyx ppypxx +−−−= αα sincos 11  

( ) ( ) yxy ppxpyy +−+−= αα sincos 11  
 



and the rotated center is 
 

( ) ( ) xyx ppfpee +−−−= αα sincos 11  

( ) ( ) yxy ppepff +−+−= αα sincos 11  
 
So the directed line from the new center (e, f) to the rotated point (x, y) can be expressed 
as 
 

( ) ( ) ( ) αα sincos 1111 yyxx pfpypepxex +−−−+−−=−  

           ( ) ( ) efyexx +−−−= αα sincos 1111  
 

( ) ( ) ( ) αα sincos 1111 xxy pepxpyfpyfy +−−++−−=−  

           ( ) ( ) fexfyy +−+−= αα sincos 1111  
 

which have the same form as equations (2) for the ellipse rotated around its center, except 
that the new ellipse is centered at (e, f). 
 

Note:   If we are rotating about the center, then (p) = (e1 , f1) and (e, f) = (e1 , f1) 
and we are back to equations (2). 

 
Therefore, we can state that: 
 

When an ellipse gets rotated by angle α about a point p other than its center, the 
center of the ellipse gets rotated about point p  and the new ellipse at the new 
center gets rotated about the new center by angle α.  

 
 



Rotating an Ellipse More Than Once 
 
If an ellipse is rotated around one center of rotation and then again around a different 
point, what is the result?   
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Let us assume that the ellipse has its center at (e1, f1).  The ellipse is first rotated about the 
point p by angle of α1, and then rotated about the point q by angle α2. 
 
Using the rule derived in the preceding section, we can compute the center point (e2, f2) 
after the first rotation  

 
( ) ( ) xyx ppfpee +−−−= 11112 sincos αα  

( ) ( ) yxy ppepff +−+−= 11112 sincos αα  
 

Then compute the final center point (e3, f3) with similar equations 
 

( ) ( ) xyx qqfqee +−−−= 22223 sincos αα  

( ) ( ) yxy qqeqff +−+−= 22223 sincos αα  
 

Finally, the ellipse is plotted centered at point (e3, f3) with a rotation of (α1  + α2). 
 
In other words,  
 

The center point is successively rotated (translated) around each of the two 
centers of rotation, and the ellipse itself is rotated about the new center by the 
sum of the two rotation angles.   

 
This makes plotting the rotated ellipses easier, since you only have to rotate the points on 
the ellipse once. 
 
This process can be applied any number of times for multiple rotations around multiple 
points. 



Constructing (Plotting) an Ellipse 
 
For a non-rotated ellipse, it is easy to show that  
 

βcoshx =       (3a) 
βsinvy =       (3b) 

satisfies the equation    12
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Therefore, equations (3) satisfy the equation for a non-rotated ellipse, and you can simply 
plot them for all values of β from 0 to 360 degrees.  For ellipses not centered at the 
origin, simply add the coordinates of the center point (e, f) to the calculated (x, y). 
 
Constructing (Plotting) a Rotated Ellipse 
 
if we let 

βcos1 hx =      
βsin1 vy =    

and then rotate these points around the origin by angle α, 
 

αα sincos 11 yxx −=   
αα sincos 11 xyy +=  

 
substituting 
 

αβαβ sinsincoscos vhx −=     (4a) 
αβαβ sincoscossin hvy +=    (4b) 

 
You can plot them for all values of β from 0 to 360 degrees.  For ellipses not centered at 
the origin, simply add the coordinates of the center point (e, f) to the calculated (x, y).  
 
If the ellipse is rotated multiple times around multiple points, first calculate the new 
center point by successively rotating it around each center of rotation (equations 2), then 
plot the ellipse at the new center point, rotating the ellipse by the sum of the rotation 
angles. 
 



Finding the Foci of an Ellipse 
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If you need to compute its foci, the conversion is easy. The formula is  
 

222 bac −=  
 
where a is the major axis and b is the minor axis (measured from the center to the edge of 
the ellipse).  c is the distance from the center to each focus.  The foci lie along the major 
axis.  If the ellipse is a circle (a=b), then c=0. 
 
You can reverse this conversion if you know the foci and either of the axes, however if 
all you have is the foci, you cannot determine a and b. 
 
If you know the foci and any point (x, y) on the ellipse, you can calculate the sum of the 
distances to the two foci:   
 

( ) 22
1 ycxd +−=  

( ) 22
2 ycxd ++=  

 
For any point on the ellipse, add 221 =+ .   Then you can calculate 222 cab −= . 
 



Intersection of Lines with a Rotated Ellipse 
 
Assume we have an ellipse with horizontal radius h and vertical radius v, centered at the 
origin (for now), and rotated counter-clockwise by angle α. 
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The equation for the non-rotated (red) ellipse is  
 

12

2
1

2

2
1 =+

v
y

h
x

       (5) 

 
where x1 and y1 are the coordinates of points on the ellipse rotated back (clockwise) by 
angle α to produce a “regular” ellipse, with the axes of the ellipse parallel to the x and y 
axes of the graph (“red” ellipse). 
 
Using the equations for rotating a point about the origin by angle α clockwise (that is, a 
counter-clockwise rotation of -α) , we get 
 

( ) ( )αα −−−= sincos1 yxx   and   ( ) ( )αα −+−= sincos1 xyy  
or 

( ) ( )αα sincos1 yxx +=         and   ( ) ( )αα sincos1 xyy −=  
 
Plugging these into equation (5) for the non-rotated ellipse, we get the equation for a 
rotated ellipse: 
 

( ) ( )
1

sincossincos
2

2

2

2

=−++
v

xy
h

yx αααα
   (6) 

 
Expanding, 

1
sinsincos2cossinsincos2cos

2

2222

2

2222

=+−+++
v

xxyy
h

yxyx αααααααα
 

or 
 



αααα 2222222 sinsincos2cos yvxyvxv ++  
0sinsincos2cos 222222222 =−+−+ vhxhxyhyh αααα   (7) 

 
Intersection with a Horizontal Line. 
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Assume that y is a constant, and re-write equation (7) as a quadratic equation for 
x: 

 
( ) ( )xhvyxhv 2222222 sincos2sincos −++ αααα  
 

( ) 0cossin 2222222 =−++ vhhvy αα   (8) 
 

So we get the parameters for the quadratic equation solution  
 

a
acbb

x
2

42 −±−= ,   where: 

 
αα 2222 sincos hva +=     (9a) 

( )22sincos2 hvyb −= αα     (9b) 
( ) 2222222 cossin vhhvyc −+= αα    (9c) 

 
Now, returning to the general case where the ellipse is not centered at the origin, assume 
the center of the ellipse is at (e, f).  The translation is simple.  Merely subtract f from the 
value of y, and add e to the resulting values of x. 
 
Note:  For a “normal” or non-rotated ellipse, (α = 0), the equations simplify to: 
 

2va =        (10a) 
0=b        (10b) 

( )222 vyhc −=      (10c) 
 



Intersection with a Vertical Line. 
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Assume that x is a constant, re-write equation (7) as a quadratic equation for y: 
 

( ) ( )yhvxyhv 2222222 sincos2cossin −++ αααα  
 

( ) 0sincos 2222222 =−++ vhhvx αα    (11) 
 

So we get the parameters for the quadratic equation solution for y 
 

a
acbb

y
2

42 −±−= ,   where: 

 
αα 2222 cossin hva +=     (12a) 

( )22sincos2 hvxb −= αα     (12b) 

( ) 2222222 sincos vhhvxc −+= αα    (12c) 
 
Now, returning to the general case where the ellipse is not centered at the origin, assume 
the center of the ellipse is at (e, f).  The translation is simple.  Merely subtract e from the 
value of x, and add f to the resulting values of y. 
 
Note:  For a “normal” or non-rotated ellipse, (α = 0), the equations simplify to: 
 

2ha =       (13a) 
0=b       (13b) 

( )222 hxvc −=     (13c) 
 



Intersection of Rotated Ellipse with Sloping Line(s) 
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This is the general case where the ellipse is rotated by angle α and the line has the 
equation 
 

1bmxy +=   where  ∞≠m , e.g., the line is not vertical. 
 
Note:   We use b1 instead of b to avoid confusion with the b parameter in the quadratic 

equation. 
 
Substituting this expression for y in equation (7),  
 

( ) ( ) αααα 22
1

2
1

2222 sinsincos2cos bmxvbmxxvxv ++++  

( ) ( ) 0sinsincos2cos 22222
1

222
1

2 =−++−++ vhxhbmxxhbmxh αααα  
  

Expanding, 
 

ααααα sincos2sincos2cos 1
222222 xbvmxvxv ++  

ααα 22
1

22
1

22222 sinsin2sin bvmxbvxmv +++  

ααα 22
1

22
1

22222 coscos2cos bhmxbhxmh +++
0sinsincos2sincos2 22222

1
222 =−+−− vhxhxbhmxh ααααα    

 
Collecting terms, as before, 
 

ααααα 222222222 cossinsincos2cos mhmvmvva +++=  
ααα 222 sinsincos2 hmh +−  

αααααα sincos2cos2sin2sincos2 1
22

1
22

1
2

1
2 bhmbhmbvbvb −++=  

2222
1

222
1

2 cossin vhbhbvc −+= αα  
 
or 
 



 
( ) ( )αααααααα 22222222 sinsincos2cossinsincos2cos +−+++= mmhmmva  

         (14a)  
( ) ( )αααααα sincoscos2sinsincos2 2

1
22

1
2 −++= mbhmbvb   (14b) 

( ) 2222222
1 cossin vhhvbc −+= αα      (14c) 

 
where, again, 
 

a
acbb

x
2

42 −±−=  

 
Once the value(s) for x is calculated, use the equation   1bmxy +=   (15) 
to calculate the corresponding y values for the intersection points. 
 
Note: This method will not work for vertical lines (infinite slope).  That would require 

reversing the above solution to solve for y instead of x.  It is much easier, in this 
case, to use the special formula described above for intersections with vertical 
lines (equations (12)). 

 
Note: Substituting m = 0 and b1 = y (for a horizontal line) into the above formulas for a, 

b, and c (equations 14), we get the same formulas as equations (9). 
 
Again, returning to the general case where the ellipse is not centered at the origin, 
assume the center of the ellipse is at (e, f).  The equation for the line must also be 
translated to coordinates with their origin at (e, f).  Letting x1 and y1 be those coordinates, 
 

exx −=1   fyy −=1  
 

and the equation for the line becomes: 
 

( ) 111 bexmfy ++=+  
or 

( )fbmemxy −++= 111 . 
 

So, in the new coordinate system, 
 

211 bmxy += ,  where   fmebb −+= 12  
 
Therefore, we must add ( )fme −  to b1 in equations (14).  Then calculate the intersection 
points, and add e to each calculated x-value to return to the original coordinate system.  
Finally, calculate y for each x using 1bmxy +=  (equation (15)), where b1 is the original 
value. 
 



 
In the special case, for non-rotated ellipses (α = 0) with sloping line (m≠0): 
 

222 mhva +=       (11a) 
mbhb 1

22=       (11b) 

( )22
1

2 vbhc −=       (11c) 
 

And for the horizontal line (m = 0, b1 = y), the equations further reduce to the same as 
equations (10) for non-rotated ellipses. 
 



Bounding Box for a Rotated Ellipse 
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We would like to know the maximum and minimum horizontal and vertical values for a 
rotated ellipse, i.e., the bounding box for the ellipse. 

 
Assume, as before, that the ellipse is centered at the origin.  The top line of the bounding 
box, at y=ymax, may be thought of as a horizontal line which intersects the ellipse at a 
single point.  Equations (9) give the a, b and c values for solving the quadratic equation 
for x on that line: 
 

αα 2222 sincos hva +=      (8a) 
( )22sincos2 hvyb −= αα      (9b) 

( ) 2222222 cossin vhhvyc −+= αα     (9c) 
 

Note that a does not contain the variable y, therefore a is a constant for this condition. 
 
Recalling that you get a single solution when 

 

042 =− acb       (17) 
 

we can plug in the values for a, b and c from equations (9) and solve for y. 
 

( )( ) ( )( ) 0cossin4sincos2 2222222222 =−+−− vhhvyahvy αααα  
 
Separate out the y terms: 
 

( )( ) ( ) 04cossin4sincos2 22222222222 =++−− vahyhvayhv αααα  
 

( ) ( )( ) 04cossin4sincos4 222222222222 =++−− vahyhvahv αααα  
 

( ) ( )αααα 222222222

22
2

cossin4sincos4

4

hvahv

vah
y

+−−
−=  



 

( ) ( )αααα 222222222

22

cossinsincos hvahv

vah
y

+−−
−±=  (18) 

 
where             αα 2222 sincos hva +=     (9a) 

 
The positive and negative values give solutions for ymax and ymin.  There is no need to find 
the x-values corresponding to these y-values at this time. If the ellipse is not centered at 
the origin, add the vertical offset of the ellipse center. 

 
Turning now to the maximum and minimum horizontal values, go back to the 
intersection of a vertical line with the ellipse.  The right line of the bounding box, at 
x=xmax, may be thought of as a vertical line which intersects the ellipse at a single point.  
Equations (12) give the a, b and c values for solving the quadratic equation for y on that 
line: 

αα 2222 cossin hva +=     (12a) 
( )22sincos2 hvxb −= αα     (12b) 

( ) 2222222 sincos vhhvxc −+= αα    (12c) 
 
and letting   042 =− acb , as before, solve for x: 
 

( )( ) ( )( ) 0sincos4sincos2 2222222222 =−+−− vhhvxahvx αααα  
 
Separate out the x terms: 
 

( )( ) ( ) 04sincos4sincos2 22222222222 =++−− vahxhvaxhv αααα  
 

( ) ( )( ) 04sincos4sincos4 222222222222 =++−− vahxhvahv αααα  
 

( ) ( )αααα 222222222

22
2

sincossincos hvahv

vah
x

+−−
−=  

 

( ) ( )αααα 222222222

22

sincossincos hvahv

vah
x

+−−
−±=  (19) 

 
where            αα 2222 cossin hva +=     (12a) 

 
The positive and negative values give solutions for xmax and xmin.  There is no need to find 
the y-values corresponding to these x-values at this time.  If the ellipse is not centered at 
the origin, add the horizontal offset of the ellipse center. 



Determining the Tangent to an Ellipse 
 
Assume we have an ellipse with horizontal radius h and vertical radius v centered at (e, f).  
We wish to determine the tangent to the ellipse at point (x1, y1).  
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If this were a circle, the tangent would be negative inverse of the slope (dy/dx) of the 
radial line, or –dx/dy.  However, because the axes are not equal, we have to make them 
equal by first multiplying dy/dx by h/v.  Then take the negative inverse = (-dx/dy)(v/h).  
This gives the slope if the ellipse were a circle, so we now have to multiply again by v/h 
to re-proportion the circle back to an ellipse. 
 
Thus, the slope m1 of the tangent can be calculated as 
 

2

2

1

1
2

2

1 h
v

fy
ex

h
v

dy
dx

m ×
−
−−=×−=     (20) 

 
and the equation for the tangent line is  
 

( ) 111 yxxmy +−=       (21) 
 
Note:  if  fy =1 , the slope is infinite and the equation is 1xx =   for all y. 
 



Determining the Tangent to a Rotated Ellipse 
 
Assume the ellipse in question is rotated by angle α, and we wish to find the tangent line 
at (x2, y2) .  First rotate the (x2, y2) point back to the corresponding point on a “normal” or 
un-rotated ellipse with the equations 
  

( ) ( ) efyexx +−+−= αα sincos 221     (22a)    
( ) ( ) fexfyy +−−−= αα sincos 221 .   (22b) 
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Now we can solve for the tangent line of the un-rotated ellipse, using the technique from 
the previous section.  Substituting  x1 and y1 from equations (22) into equation (20), 
 

( ) ( )
( ) ( ) 2

2

22

22
1 sincos

sincos
h
v

exfy
fyex

m ×
−−−

−+−−=
αα
αα

   (23) 

 
which is the slope of the tangent to the un-rotated ellipse in terms of the rotated points 
(x2, y2). 
 
Since the ellipse was rotated, we must rotate the tangent line back to the angle of the 
rotated ellipse.  In order to rotate the line, we need more than one point on the line.  
 
First, we will work with the case where m1 is not infinite. 
 
We will pick an arbitrary point (x1a, y1a) on the tangent line. 
 
Let  zxx a += 11  where z > 0, 
then ( ) 11111 yxxmy aa +−=   (from equation 2) 

     ( ) 1111 yxzxm +−+=  
      11 yzm +=  
 
Now let us rotate (x1a, y1a) back to the rotated ellipse.  Call this rotated point (x2a, y2a) 
 



( ) ( ) efyexx aaa +−−−= αα sincos 112   
      ( ) ( ) efyzmezx +−+−−+= αα sincos 111   (24a) 

( ) ( ) fexfyy aaa +−+−= αα sincos 112   
      ( ) ( ) fezxfyzm +−++−+= αα sincos 111   (24b) 

 
Now the slope m2 of the rotated tangent line at (x2, y2) can be expressed as dy2/dx2. 

 
( ) ( ) ( ) ( ) efyexx +−−−= αα sincos 212    (25a)    
( ) ( ) ( ) ( ) fexfyy +−+−= αα sincos 112 .   (25b) 

 
Now, using the expressions for (x2a, y2a) in equations (24) and the expressions for (x2, y2) 
in equations (25), we can calculate 
 
 

222 xxdx a −=  
      ( )( ) ( )( ) eefyfyzmexezx −+−−−+−−−−+= αα sincos 11111  
      αα sincos 1zmz −=  
      ( )αα sincos 1mz −=  

222 yydy a −=  
      ( )( ) ( )( ) ffexezxfyfyzm −+−−−++−−−+= αα sincos 11111  
      αα sincos1 zzm +=  
      ( )αα sincos1 += mz  
 

αα
αα

sincos
sincos

1

1

2

2
2 m

m
dx
dy

m
−

+== .      (26) 

 
Note: If 0sincos 1 =− αα m , the rotated slope is infinite. 
 
In the case where the un-rotated slope m1 is infinite, we can still calculate the rotated 
slope.  In this case,  
 

 11 xx a =       (27a) 
and let  zyy a += 11 , where z > 0.   (27b) 
 
Repeating the above calculations for the new (xa, ya) , 

 
( ) ( ) efyexx aaa +−−−= αα sincos 112   

      ( ) ( ) efzyex +−+−−= αα sincos 11    (28a) 
( ) ( ) fexfyy aaa +−+−= αα sincos 112   

      ( ) ( ) fexfzy +−+−+= αα sincos 11    (28b) 
 



Now, using the expressions for (x2a, y2a) in equations (28) and the expressions for (x2, y2) 
in equations (25), we can calculate 

 
222 xxdx a −=  

      ( )( ) ( )( ) eefyfzyexex −+−−−+−−−−= αα sincos 1111  
      αsinz−=  

222 yydy a −=  
      ( )( ) ( )( ) ffexexfyfzy −+−−−+−−−+= αα sincos 1111  
      αcosz=  
       
 

α
α

sin
cos

2

2
2 −

==
dx
dy

m ,        (29) 

which, incidentally, is the limit of equation (26) as ∞→1m . 
 
Note  In equation (29), m2 is infinite if sin α = 0, that is, rotating a line of infinite slope 

by a multiple of 180 degrees (sin α = 0) results in another infinite slope. 
 
Summary:  The slope m2 of the tangent at a point (x2, y2) on an ellipse rotated by angle α 
is determined by first calculating the tangent m1 on the un-rotated ellipse using equation 
(23).  Then, if m1 is infinite, calculate m2 using equation (29), otherwise use equation 
(26).  
 
In either case, the equation for the tangent line is  
 

( ) 222 yxxmy +−=       (30)



Approximating a Segment of an Ellipse with a Bezier Curve 
 
If you are drawing an elliptical arc, chord, or pie segment, it can be useful (and often 
faster) to draw the segment as a cubic Bezier curve.  This works for small segments, not 
more than 90 degrees and optimally, less than 45 degrees.  The smaller the segment, the 
greater the accuracy.  The larger you magnify a segment of an ellipse, the straighter the 
curve appears. 
 
It is assumed that you know the horizontal and vertical radii of the ellipse (h and v), the 
center of the ellipse (e, f) and the rotation angle α, if the ellipse is rotated. 
 
If the ellipse is rotated, we will first rotate it back to a “normal” un-rotated ellipse. If you 
are starting with 2 points (xstart, ystart) and (xend, yend) on the rotated ellipse, rotate each of 
them back using the formula 
  

( ) ( ) ( ) ( ) efyexx +−+−= αα sincos1         and   
( ) ( ) ( ) ( ) fexfyy +−−−= αα sincos1 . 

 
Next determine the start and end angles.  To do that, we first define a function  
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 , where the angle is in radians. 

 
This will result in a single value between 0 and 2π (0 and 360 degrees). 
 
These start and end angles,  βstart and βend, are the angles used in the formulae  
 

βcos1 hex =−       
βsin1 vfy =−      

 
defining the ellipse. They are not actual angles unless the ellipse is a circle.  To find the 
angles, use the arctan2 formula, above, as follows: 
 

�
	



�
�


 −−=
v

fy
h

ex 11   ,2arctanβ    

 



To determine the Bezier control points, assume they will lie on lines tangent to the ellipse 
at the start and end points.  Determine the parameters for the tangent lines at both ends of 
the segment, using the technique described in the previous section.  Now calculate angles 
of approximately 1/3 and 2/3 of the angle (βend -βstart ) and spanned by the segment.  
Empirically, the values .32343333 and .67636667 work quite well.  Adjust the angles if 
the arc crosses 360 degrees.  
 
Now imagine lines from the center of the ellipse at those angles and find their 
intersection with the tangent lines.  (Take into account the possibility that the tangent or 
radial lines may have infinite slope.)  These intersections are your Bezier control points. 
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Now, if the ellipse is rotated, rotate the Bezier control points by the same angle, using the 
formulae  

 
( ) ( ) efyexx +−−−= αα sincos 11   
( ) ( ) fexfyy +−+−= αα sincos 11 .   

 
Now draw the Bezier curve from the (rotated) start point to the (rotated) end point using 
the calculated (rotated) control points. The curve is shown in blue on the figure above. 
 
  


