
QUICKCALC BASIC

Functions, Statements, and Commands

Notation used in this document:

expression A BASIC expression. A string of variables, functions, and operations
which evaluates to a number, string, or logic value.

num-expr A numerical expression. Any expression which evaluates to a number
(DOUBLE or LONGMATH) or a number string.

string-expr A String expression. Any expression which evaluates to a string.

GUI mode Refers to the Windows mode of running QuickCalc (see “Graphic User

Interface mode vs. Console Mode).
console mode Refers to the “DOS window” or “command-line” mode of running

QuickCalc (see “QuickCalc User Interface).
stmt-num A statement number. An unsigned integer used to number a line in the

program.
value A number string, that is, a character string that represents a number, not

enclosed in quotes.
file-num A file number, or an expression that evaluates to a file number between 1

and the maximum number of files allowed (see “Customizing”)
num-var A numeric variable, DOUBLE or LONGMATH. (Not an expression).

string-var A string variable.

clause One or more BASIC statements, separated by colons (:).

arg An argument, or value passed to a function. An argument can usually be

an expession which evaluates to a number or string as required by
the function.

new This feature is new to this version of BASIC. Not necessarily part of the
“standard” BASIC.

file-spec A file specification. A string which identifies a file. This may be the file
name or a path \ name.

string-array A special notation for storing a LONGMATH number or hex string in a
string array (see “Working With Long Numbers”).

? (statement) Shorthand for PRINT.

?? (statement) (new) Shorthand for DEBUGPRINT.

// (statement) (new) Shorthand for REM (similar to C-language).

@ (function) @ (string-expr)

Indirect name reference (new).
Substitutes the contents of string-expr as the name referenced in the
statement. string-expr must contain a valid variable, statement or function
name. The first characters not valid in a name and all subsequent
characters will be ignored.
See “Advanced Features in QuickCalc” for more information.

ABS (function) ABS (num-expr)
Absolute value of numeric expression

ACOT (function) ACOT (num-expr)

Arccotangent of numeric expression. The angle is returned in radians,
unless the DEGREES statement is given. (see DEGREES and
RADIANS). (see also ATN).

ACOT (x) is valid for all [real] x, positive and negative. The result is an

angle from +π to 0 (or 180 to 0 degrees), which places the angle
in the first or second quadrants. The arccotangent has no way of
knowing if the angle is intended to be in the third or fourth
quadrants.

Note: the arccotangent may also be calculated as π /2 – arctan (x),

however, very large values of x will result in loss of precision as
arctan(x) becomes very close to π /2.

APPEND (statement) APPEND file-spec

Appends the program specified by file-spec to the end of the currently
loaded program. The original program and the appended program
are concatenated in memory before the program is run.

file-spec (the file specification) must be a string. If the file-spec contains a

colon, backslash(es) or embedded blanks, it must be in quotes –
(see “Strings”). You may use any file specification that works. .
If the path is in quotes, you must use a double backslash (\\)
wherever a backslash is desired. (Don’t use ..\). If a complete
path is not specified, the file-spec is appended to the path from
which the original program was loaded.

This function is useful if you have a collection of subroutines that are used

in many different programs. Simply group the subroutines
together as a program and then APPEND them.

Note: The combination of the two programs must be syntactically
correct. No duplicates (statement numbers, functions or array
definitions). The two programs must fit in the space allocated to
load programs as set in the “Customize” dialog.

Note: The APPEND statement may appear anywhere in the program. It
does not get executed at run time. The appended code is always
placed at the end.

Note: An appended program may append another program, if desired, or
include sections of code (see INCLUDE). Be careful to avoid a
recursive loop of APPENDs (program loads itself).

ASC (function) ASC (string-expr).

ASCII code for 1st char of string.
Note: ASC ("") = 0 (no error)

ATN (function) ATN (num-expr)

Arctangent of numeric expression. The angle is returned in radians, unless
the DEGREES statement is given. (see DEGREES and RADIANS)

ATN (x) is valid for all [real] x, positive and negative. The result is an
angle from - π /2 to + π /2 (or –90 to +90 degrees), which places
the angle in the first or fourth quadrants. The arctangent has no
way of knowing if the angle is intended to be in the second or third
quadrants.

BEEP (statement) Make a sound. Plays the sound in the file “beep.wav”, located in the

directory from which QuickCalc is loaded. You can replace that file with
a sound of your choosing, just call it beep.wav.

 If you specify a .wav file as a parameter, i.e., BEEP filename, The

computer will play that wave file (if it can find it). If you specify a
filename only, it will look in the current working directory. If you specify
a complete path, it will look there. You can specify a string variable or a
quoted string constant. If it is a constant, remember you must replace all
back-slash characters with double back-slashes (\ \).

 Note: You can’t use .mid or .mp3 files.

 Although it is not intended for this purpose, it will play songs and other

music if it is in .wav format. If a long wave file gets started and you want
to stop it, enter BEEP "" or click the Step button if a program is running.

 Note: You can find some interesting wave file sounds in the

Windows\Media folder.

 Note: In the “old” BASIC, you could create a beep by printing CHR$(7).

This doesn’t work in the GUI Windows environment.

BREAK (statement) BREAK

Breaks out of the current FOR or WHILE loop.
Causes an error message is the program is not currently in a loop.

BROWSECOMMPORTS$ (function) [GUI-mode only]
BROWSECOMMPORTS$ (title-string)
Displays a dialog box which allows you to select an active and available

COMM port to use when OPEN-ing SERIAL files. Returns a
string containing the name of the selected COMM port, e.g.,
"COM1."

If the desired port is not connected or the external device is not on, the
port will not appear in the list. Connect the device or power it on
and then click the “Rescan” button. Cancelling this dialog will
terminate the BASIC program.

You can use the resulting string in an OPEN statement, e.g.,
OPEN SERIAL, 2, BROWSECOMMPORTS$ (“Select the Port”), ….

which will allow you to select the port at Open time.

BROWSEINPUTFILE$ (function) [GUI-mode only]
BROWSEINPUTFILE$ (title-string)
Displays a dialog box which allows you to browse through the files on

your computer and select one to use as an input file.
Returns a string containing the full path to the selected file, which you can

use in an OPEN statement, e.g.,

OPEN (INPUT, 2, BROWSEINPUTFILE$ (“File to Read”)

The title-string will be displayed at the top of the file selection dialog box.

Use a title which will be meaningful to you when you run the
program, so you know which file the program is requesting.

If you cancel out of the dialog box, you will get an error message and the

BASIC program will terminate.

Note: BROWSEINPUTFILE$ does not open the file.
Note: The file you specify must exist.

BROWSEOUTPUTFILE$ (function) [GUI-mode only]
BROWSEOUTPUTFILE$ (title-string)
Displays a dialog box which allows you to browse through the files on

your computer and select one to use as an output file.

Returns a string containing the full path to the selected file, which you can

use in an OPEN statement, e.g.,

OPEN (OUTPUT, 3, BROWSEOUTPUTFILE$ (“File to Write”)

The title-string will be displayed at the top of the file selection dialog box.

Use a title which will be meaningful to you when you run the
program, so you know which file the program is requesting.

If you cancel out of the dialog box, you will get an error message and the
BASIC program will terminate.

Note: BROWSEOUTPUTFILE$ does not open or create the file.
Note: If the file you specify already exists, it will be over-written when

you open it. If not, it will be created at that time.
Note: When the “explorer-type” browse dialog is open, you may rename

files, delete files, create new folders, etc.

CHAIN (statement) CHAIN program-file-spec [, KEEPDATA]

Causes the current program to be terminated and a new program to be run.

The new program is specified by the string expression program-file-spec.
The program-file-spec may be a program name or a full or partial path. If

the complete path is not specified, the default path is the directory
from which the original program was loaded.

Files which are currently open remain open and may be used in the
chained program. If you want them closed, CLOSE them before
doing the CHAIN.

Debug switches remain in effect.
If you are stepping through a program and encounter the CHAIN statement,

you will continue stepping into the chained program.
If a graph is active, it remains active, and the chained program may plot

more data onto it.
Because this statement is executed while the program is running, the

program specification may be any string expression, calculated at
run time or typed in by the user.

Any statements on the same line following the CHAIN statement will not
be executed.

If the optional parameter KEEPDATA is specified, all program variables

and arrays are not cleared, and their values may be used in the
chained program. The LONG “ALL” switch remains in effect.
Daylight Saving Time and Time Zone overrides remain in effect.

Other than the above, all program switches, etc., are reset, exactly as if the

program were started with the RUN command.

Note: Be careful not to CHAIN a program to itself (directly or indirectly),

as this could result in a never-ending program.

CHANGESHAPE (statement)
 CHANGESHAPE shape-id, parameters��

Modifies the descriptive parameters of shapes that have already been

drawn.

shape-id is a value retrieved from LASTSHAPEID immediately after a
shape is drawn.

parameters are similar to the descriptive parameters used in the SHAPE
statement when the shape is created. Not all parameters are valid
for all shapes.

(See “Advanced Graphics” for more information about this statement
including a list of parameters.

CHDIR (statement) CHDIR string-expr

Changes the current working directory to the path specified in string-expr.
The current working directory is the default directory from which
programs are loaded and files are referenced or created if a complete path
is not specified.

If string-expr is a literal string, it must be enclosed in quotes, and if it
contains back-slash characters, they must be replaced with double-
backslashes, e.g. "C:\\quickcalc\\programs". If the string does not specify
a complete path, it will look for it in the current working directory.

Console Mode: The path must already exist. The current working
directory is changed to the new path, and replaced when QuickCalc is
terminated. The new working directory will be displayed on the screen.

If you don’t know the current directory, enter CHDIR ".", or type
PRINT WORKINGDIR$.

You can specify “..” or “..\\” or “..\\directory” or any other valid DOS
path (remember to use double-backslashes).

GUI Mode: If the path does not already exist, you have the option of
creating it. You may not specify “..” or “..\\” . The new path replaces the
path specified in the “Working Directory” box, and is the same as if you
had typed it into that box, except that the CHDIR statement may be
included in a program. . If you don’t know the current directory, enter
PRINT WORKINGDIR$. The new path is added to the list of recently used
working directories. It remains in effect until you change it again.

Note: If CHDIR is used within a running BASIC program, the current
working directory will be reset to its original path when the program
terminates.

CHECKDEGREES (function)
Returns 1 if degrees is set, 0 if radians (see DEGREES and RADIANS).
Allows a subroutine to function differently based on the degrees/radians
setting. Allows you to save and restore that setting, if necessary.

CHECKMOUSECLICK (function)
 CHECKMOUSECLICK [no parameters]

Returns the shape ID of the shape clicked on (if the shape was created
with the MOUSECLICK option. (see “Advanced Graphics”). If nothing has
been clicked since the last call to CHECKMOUSECLICK, it returns -1. If the
user clicked somewhere other than a “clickable” shape, it returns -2. If the
user typed a character, the ASCII code of that character is returned with a
negative sign.

CHOOSEFONT$ (function) CHOOSEFONT$ [no parameters]
Displays a font selection dialog and allows you to choose a typeface, size,
bold and/or italic. Returns the typeface [font] name.
Shows only scalable fonts which are installed on your computer.
The point size is placed in the system variable choosefontsize.
The bold value is placed in the system variable choosefontbold, as a

number from 0 to 1000 (typically 400 for normal, 700 for bold).
The italic value is placed in the system variable choosefontitalic (0 or 1).
You may use these values in the SHAPE or TYPE statements (see

“Intermediate Graphics”).
Note: If you click the CANCEL or [X] buttons, it will generate an error

and terminate the BASIC program.

CHR$ (function) CHR$ (num-expr)
Converts ASCII code to its character equivalent.
CHR$ (x) is valid for 0 ≤ x ≤ 255.
CHR$ (0) returns a NULL string.

CINT (function) CINT (num-expr)

Converts a number to an integer. The fractional portion is rounded to the
nearest integer (positive or negative).

(Also, see INT and FIX)

CLEAR (command) CLEAR

Sets all numeric variables to 0, string variables to NULL.
 Undefines (undimensions) all arrays. Undefines LONGMATH variables.

Frees all string memory and LONGMATH structures.
Note: CLEAR is automatically performed before each RUN.

CLOSE (statement) CLOSE file-num-1 [, file-num-2…]

file-num-n (numeric expressions) refer to open file(s). If a file is not open,
no action is taken.

CLOSE with no parameters closes all open files.
Note: all files are automatically closed when the program terminates,

unless you are CHAIN-ing to another program.

CLS (statement) CLS

(GUI Mode Only) Clears the console screen (window).

Does not affect the log file.

COLOR (statement) COLOR (num-expr)

(Console mode only), sets FG and BG color. Use 16*(BG color) + (FG
color).

0=black, 1=blue, 2=green, 3=cyan, 4=red, 5=magenta, 6=brown, 7=white,
8=gray, 9=lt blue, 10=lt green, 11=lt cyan, 12=lt red, 13=lt
magenta, 14=yellow, 15=brt white. Default color = 7.

CONT (command) CONT

Resumes program execution while in stepping mode, usually after a STOP
statement (or DEBUG STEP) or if interrupted by the STEP button (see

“Debugging”).
Note: Clicking CONTINUE has the same effect.
Won’t work after errors. Doesn’t work if a program is not paused..

CONTINUE (statement) CONTINUE

(new) Jumps to the end of the current FOR or WHILE loop. Does not break
out of the loop, like BREAK does. Causes the loop to continue to
execute unless its end condition has been met.

COS (function) COS (num_expr)

Cosine of an angle. The angle is assumed to be in radians,
unless the DEGREES statement is given. (see DEGREES and RADIANS)

COSSAME (function) COSSAME [no parameters].

(new) Following a SIN function call for a LONGMATH angle, returns the
cosine of the same angle. This works very quickly, since the
cosine and sine are calculated at the same time, and the cosine
value is saved. If no SIN function call has been made, COSSAME
will return zero.

DATA (statement) [stmt-num] DATA value, value …

May contain numbers or strings (quoted or unquoted), separated by
commas. DATA statements must end with a colon or end-of-line.

Quoted strings may use \", \r and \n to insert quote, c/r and new-line into
the string.

Unquoted strings will have blanks and tab characters stripped off front and
back when they are read, and may not contain commas, colons,
quotes, // or embedded escape sequences (\", \n or \r). They may
not start with a digit, sign, or decimal point (i.e., must not be
confused with a number). Colon, comma, end-of-line and
comment (//) will terminate the un-quoted string.

DATA statements do not need statement numbers, unless they will be
referenced by RESTORE statements.

More than one DATA statement may appear on a line, but only the first one
is assigned the line’s statement number, for the purposes of the
RESTORE statement.

DATA statements may appear anywhere, including inside loops,
subroutines, IF clauses, or after the end. The statements are not
executed, and are accessed in the order they appear in the
program.

DATA statements may not be entered from the command line.

DATE$ (variable) DATE$

Returns a string, "mm-dd-yyyy".
Date is set once when QuickCalc starts, updated with UPDATEDATETIME.

DAYOFWEEK$ (variable) DAYOFWEEK$

(New). Returns Day as 3-character abbreviation, e.g., “Tue”. Updated
along with DATE$ and TIME$.

DEBUG (statement) DEBUG [optional-parms]

(new). Sets parameters for debugging. (See “Debugging”).
DEBUG STEP enters stepping mode (CONT exits stepping mode).
DEBUG TRACE enters tracing mode.
DEBUG TRACEOFF leaves tracing mode.
DEBUG TIMER, function [,OFF] times LONGMATH functions (See

“Debugging”).

DEBUGPRINT (statement) DEBUGPRINT variable-name

(one variable or array item only- no expressions or constants)
(new).
For LONGMATH variables:

DEBUGPRINT displays the variable as it is stored, using six lines,
maximum.

Shows the first 64 digits and at least the last 64, along with the
name of the variable, number of blocks, sign, exponent,
length, and normalized state. This is useful when
debugging extremely long numbers, as you don’t have to
print the entire number.

For DOUBLE variables:
DEBUGPRINT displays the variable name and its current value with

the maximum precision.
For STRING variables:

DEBUGPRINT displays the variable name, the current length and
the current string value. If the string will not fit on the
same line, it will start in column 1 of the next line. Trailing
blanks are not visible.

You may also use ?? as a shortcut for DEBUGPRINT.

DEF (statement) DEF function-name ([arg [, arg]…]) = expression | GOSUB stmt-no

Defines and names a function that you write.
function-name is a valid variable name. This name becomes the name of

the function. name must be unique and may not duplicate the
name of any BASIC function, statement, command, constant or
operator (see the PRINTALL RESERVED statement), and may not be
the same as any variable or array name used in your program.

arg is an argument. It is a valid variable name in the function definition
that is replaced by a value when the function is called. The name
cannot be the same as any function, statement or command in the
BASIC language. The arguments in the list represent, on a one-to-
one basis, the values (parameters) that are given when the function
is called. If no arguments are supplied, the parentheses are still
required. Parameters given when the function is called must match
the type (numeric or string) of the corresponding argument. If
fewer parameters than arguments are supplied, the remaining
arguments will be set to 0 or NULL string.

expression defines the returned value of the function. The type of the
result of the expression must be compatible with the way it will be
used or the variable to which it will be assigned. The “expression”
form of the function definition is limited to one line.

stmt-no is the statement number of a subroutine (see the GOSUB
statement). If the function is defined this way, the subroutine will
be called, using the same over-riding variables (arguments). The
function returns the value that the subroutine provides in the
RETURN statement (see RETURN statement).

Arguments (arg) that appear in the function definition serve only to define
the function. They do not affect program variables that have the
same name. Unused arguments are not a problem. A variable used
in the expression or subroutine does not have to appear in the list
of arguments. If it does, the value of the argument is supplied (or
implied) when the function is called. Otherwise, the current value
of the variable is used (see “User-Defined Functions”).

A function definition expression may include other user-defined functions,
however a care must be taken to avoid a recursive definition which
would result in an endless loop and cause the program to fail (see
“User-Defined Functions”). The program will teminate with an
error message if you attempt to nest user-defined function calls to a
depth of 200.

A function definition subroutine is subject to all the rules governing
GOSUB. Subroutines may be nested, but be careful with recursive
subroutine calls to avoid an infinite loop (see paragraph above).

A DEF statement may appear anywhere in the program, even after the
statements that call it. If the same function is defined more than
once, it will cause an error.

LONGMATH numbers may be used along with DOUBLE numbers, just as
with regular expressions. The type of numbers used as parameters

will affect the type of computation and the type of output. See
“Working with Long Numbers” and “User-Defined Functions”.

DEGREES (statement) DEGREES

(new) Causes all subsequent Trig functions to assume the angle is given
or required in degrees. This remains in effect until a RADIANS statement
is given, and is reset to radians automatically at the start of a program.

DELAY (statement) DELAY (num-expr)

Causes the program to wait for a specified number of milliseconds
(between 1 and 10000). This can be used to slow a program down
so that you can read the output or watch a graph being plotted. The
program uses no CPU cycles while it is waiting.

DELETESHAPE (statement) DELETESHAPE (shape-id)

Deletes a shape from the graph.
shape-id is a value retrieved from LASTSHAPEID immediately after a

shape is drawn.
See “Advanced Graphics”.

DIM (statement) DIM array-1 (num_expr [, num-expr …]) [,array-2 (…)] [,…]

Dimensions arrays.
Note: Subscripts are relative to 0 (No OPTION BASE).
num_expr must be > 0.
Arrays must be dimensioned before using them.
Maximum of 5 dimensions for any array.
Arrays may not have the same names as scalar variables (e.g., x and x(2)).
All elements are initialized to zero or NULL.
Note: Use LONG to dimension LONGMATH arrays.

 (function) num-array = DIM (array)

Returns the dimensions of an array in num-array.
num-array must be dimensioned with 6 elements, e.g,. DIM b (6).
The order (number of dimensions) is returned in num-array (0).
The size of each dimension is returned in num-array (1) through (5).

This is useful in a subroutine or piece of included code where the
operation is dependent on the size of the array. Can be used to make sure
the array doesn’t overflow or make a check on subscript values.

ELSE (see IF).

END (statement) END

Ends the program. Nothing beyond the END will be executed unless it is
branched to or called.

ENDTIMER (function) ENDTIMER [no-parameters]

Ends the timing of an interval and returns the count in microseconds.
The interval is the time elapsed since the last STARTTIMER function call.

If there was no STARTTIMER function call, the value returned is
meaningless.

Note: Timing includes the time for interpreting the BASIC statements and

all system overhead that occurs between the STARTTIMER and
ENDTIMER function calls. For that reason, it is not an accurate
indication of the time required to do mathmatical functions. (See
DEBUG TIMER).

EOF (function) EOF (num-expr [, "LINE"]).

num_expr must be a file number, currently open for input or RANDOM. It
is a numeric expression which will be truncated to an integer.

Returns –1 (“true”) if we are at end-of-file (no data remaining), 0 if not.
The optional second parameter, "LINE" indicates that the next input

operation will be a LINE INPUT #. In this case, the EOF function
returns 0 if any records or data (including blank or zero-length
records) remain in the file. LINE INPUT # can read such records.

If the second parameter is omitted, it is assumed that the next input
operation will be an INPUT #. In this case, the EOF function skips
over blanks and, for sequential files, reads subsequent records to
search for more data.

For RANDOM files, the search stops at the end of the buffer.
(Also, see the INPUT function.)

ERASE (statement) ERASE arrayname [, arrayname] …

Eliminates arrays. Un-dimensions the array.
If the array is LONGMATH, it frees LONGMATH allocated buffers.
After doing ERASE, you should do HOUSECLEAN to free string memory

and LONGMATH variable structures.

EXP (function) EXP (num-expr)

Calculates ex.
This function can overflow:

For DOUBLE, overflows around x > 709.
For LONGMATH, overflows at around x > 2302585.

EXP10 (function) EXP10 (num-expr)

Calculates 10x.
This function can overflow,:

For DOUBLE, overflows around x > 308.
For LONGMATH, overflows at around x > 1000000.

EXPANDDATETIME (function) datetime-array = EXPANDDATETIME (datetime-variable).

Expands a DATETIME variable into a DATETIME array.

If no datetime-variable is given, it expands the current date/time.
Note: See “Working With Dates and Times” for definitions, examples,
and descriptions of the array elements.

EXPONENT (function) EXPONENT (num_expr)

Returns the exponent of a floating-point value (DOUBLE or LONGMATH),
disregarding the sign of the number.

The exponent here is the power of 10 when the number is ≥ 1 and < 10
(“scientific notation”). Note: this is one lower than the exponent
used when a LONGMATH variable is stored.

EXPONENT (1.2) = 0. EXPONENT (25) = 1.
EXPONENT (.001) = -3. EXPONENT (-1500) = 3.
EXPONENT (LONGPI * 1e500) = 500.

FACTORIAL (function) FACTORIAL (num-expr)

Computes n! [n-factorial], where n > 0.
n will be converted to an integer (truncated) first.
If n is a DOUBLE, the factorial will be calculated in DOUBLE floating-point

arithmetic, yielding a DOUBLE result. Maximum size for n is 170.
If n is a LONGMATH, the factorial will be calculated using long arithmetic,

yielding a LONGMATH result. Maximum size for n is 205021,
which makes n! close to 1 million digits long (yes, the program can
do that, but it takes several minutes).

Note: Factorials get quite long. DOUBLE precision floating-point is only
about 16 digits long (approx. 20!). If you want all the digits, use
LONGMATH and set INTEGER mode (FLOAT is OK as long as the
length remains less than floating_pt_length, after which you will
lose digits to rounding.)

a = FACTORIAL (LONG (n)) will do LONGMATH calculation and then

convert the result to DOUBLE (assuming a is DOUBLE), however,
values of n > 170 will yield an answer too large to convert back to
DOUBLE.

FIELD (statement) FIELD [#]file-num| string-var-name, width AS string-var [, width AS

string-var]…

Allocates space for variables in a RANDOM file buffer or string variable.

file-num is the number under which the file was opened.
string-var-name is the name of a string variable – (not a string array or

array element.)
width is a numeric expression specifying the number of character

positions to be allocated to string-var.
string-var is a string variable that is used for random file access.

A FIELD statement defines variables used to get data out of a RANDOM
buffer after a GET or to enter data into the buffer for a PUT.

A Field statement can also define variables used to extract data from a

string or insert data into a string.

The statement:

 FIELD #2, 10 AS a$, 30 AS name$, 40 AS address$

Defines the first 10 positions in the buffer as the string variable a$, the
next 30 as name$, and the next 40 as address$.

The statement:

 FIELD abc$, 10 AS a$, 30 AS name$, 40 AS address$

Defines the first 10 positions in the string variable abc$ as the string
variable a$, the next 30 as name$, and the next 40 as address$.

FIELD does not actually place any data into the buffer or define the string.
This is done by assigning values to those variables, reading data into them,
or using LSET and RSET statements. FIELD does not “remove” data from
the file/string, either. Information read from the file/string with the GET
statement is read from buffer/string by simply referring to the variables
defined in the FIELD statement (see “Working with Files”).

A FIELD statement may define up to 10 different variables. You may re-
define the buffer/string by specifying additional FIELD statement with the
same file-num or string_var_name and different variables and positions.
This has the effect of having multiple field definitions for the same data.
You can skip over a block of characters by using width AS SPACE$, which
doesn’t count toward the total number of variables.

You may specify a total of 40 FIELD statements in a program. They may
appear anywhere in the program and in any order. FIELD statements may
not be entered from the command line.

FILESIZE (function) FILESIZE (file-num)
Returns the file size, in bytes, of an open file.
file-num is a numeric expression which must refer to the file number of a

currently open file.
If the file is open for OUTPUT or SERIAL, this function returns zero.

FIX (function) FIX (num-expr)
Truncates a number to an integer (| x | is moved “down”, closer to zero)
Truncates digits right of the decimal point - does not round!

(Also, see CINT and INT.)

FLOAT (statement) FLOAT [num-expr]

Sets LONGMATH calculation to floating-point mode.
num-expr specifies the floating point length (range 20 to 1000000).
If num-expr is not provided, the last value set is used. Default is 50.

FOR / NEXT (statements) FOR num-var = num-expr TO num-expr [STEP num-expr] ….. NEXT.

Loops may be nested. Each loop requires a separate NEXT.
NEXT may not contain a variable name.
Loops are parsed for structure. The NEXT must be physically the last

statement in the loop. An inner loop must end before the outer
loop.

Branching into or out of a loop is not allowed. Branching around a loop is
OK. Statement numbers are checked before the program runs.

Limit (TO value) and increment (STEP value) are calculated once before
the loop begins.

The entire FOR … NEXT loop may be on one line (if desired). If the
statement following the TO or STEP begins with a variable or
statement which could also be a function (like INPUT), precede it
with a colon (e.g., FOR i =1 TO 10 : j = j + i NEXT) to avoid
confusing the it with part of the expression for TO.

FORMATDATETIME$ (function) FORMATDATETIME$ (DATETIME variable)

Generates a formatted string for a date and time, for example:
Wed Apr 08 12:35:36.123445 DST 1942

FORMATDATETIME$ (). Generates a formatted string for the current date
and time.

GET (statement) GET #file-num [, record-number]

Reads data into the random-access file buffer from the file at record-
number.

record-number is relative to 1. If record-number is omitted, the next
record number following the last GET is used.

If you read to a record number which is beyond the end of the file, an error
will occur. The contents of records that were never PUT will be
returned as blanks.

Following the GET, the data from the desired record is placed in the buffer
so that it can be referenced by INPUT #, LINE INPUT # or by using
FIELD variables. The pointer is reset so that INPUT # will begin
reading at the beginning of the buffer.

If you want to reset the pointer and re-INPUT the record, simply re-issue
the GET to the same record number.

GOSUB (statement) GOSUB stmt-num

….
stmt-num (beginning of subroutine)
….

 RETURN

GOSUB transfers control to the statement at stmt-num.
The subroutine runs until a RETURN statement is encountered, then control

resumes at the next statement following the GOSUB.
Subroutines may be nested, but it is not safe to overlap them.
No statement-number checking is there to prevent branching out of the

subroutine (due to the requirement for multiple RETURN
statements), so be careful.

GOTO (statement) GOTO stmt-num

Branches unconditionally out of the normal program sequence to a
specified line number.

stmt-num must refer to the line number of a statement in the program. You
may not branch into or out of a WHILE-WEND loop or a FOR-NEXT
loop. Statement numbers are checked to prevent this.

GRAPH (statement) GRAPH [parameter [, parameter [, …]]]

GRAPH with no parameters or the first GRAPH statement starts a new
graph. Parameters are:

AXES Draws x-y axes and numbers.
AXISWEIGHT=num-expr line thickness of axes and borders, in

points.
BGCOLOR=[(r,g,b) | num-expr] Sets the background color.
BORDER Draws a border around your graph.
CLEARANCE=num-expr When auto-scaling, leaves a space of

num-expr inches between the extremes of
the plotted points and the border. num-expr
may be 0 to .25. Default is 0.1.

END Ends the graph and closes the graph window
EQUALSCALES force H and V scales to be the same
GRID Draws grid lines at the tick points.
GRIDCOLOR=[(r,g,b) | num-expr] Sets the grid color.
LOCKSCREEN=[0, 1] prevents unintentional dragging/zooming.
HEIGHT-num-expr height in inches
HMARGIN=num-expr horizontal margin, in inches.
HOFFSET=num-expr horizontal offset, in data units.
HSCALE=num-expr horizontal scale, in data units/in.
HSCALETYPE=[LOG | LINEAR | DATETIME] log, linear or

DATETIME scale on x-axis.
INCLUDEXAXIS=[0 or 1] Autoscale includes [1] or does not

include [0] the x-axis on the graph.
INCLUDEYAXIS=[0 or 1] Autoscale includes [1] or does not

include [0] the y-axis on the graph.

JPEG Generates a JPEG file of the graph.
LANDSCAPE sets 10 in. wide, 7.5 in. high
LISTPARMS Lists all the GRAPH parameters currently in

effect.
MAXIMIZE Maximizes the graph window (same as the

“maximize” button). Allows you to start the
graph maximized. You should set the size
of the graph before maximizing it.

METAFILE Generates a metafile (.emf) from the graph.
NOAXES Suppresses drawing x-y axes & numbers.
NOBORDER Does not draw a border.
NOGRID Suppresses drawing the grid.
NUMBERXAXIS=[0 or 1] Does [1] or does not [0 display ticks and

numbers along the x-axis.
NUMBERYAXIS=[0 or 1] Does [1] or does not [0 display ticks and

numbers along the y-axis.
PORTRAIT (default) sets 7.5 in. wide, 10 in. high.
PRINT Prints the graph.
VMARGIN=num-expr vertical margin, in inches.
VOFFSET=num-expr vertical offset, in data units.
VSCALE=num-expr vertical scale, in data units/in.
VSCALETYPE=[LOG | LINEAR | DATETIME] log, linear or

DATETIME scale on y-axis.
WIDTH=num-expr width in inches

(See the document “Intermediate Graphics” for more information.)

Note: GRAPH is not valid in CONSOLE mode.

HALF (function) HALF (num-expr)

Computes half of a number.
This function is about ten times faster than dividing by 2, and is useful
when working with extremely long LONGMATH numbers. It is also
compatible with DOUBLE numbers, but without the time savings.

HELP (statement) HELP [topic-number]

Designed primarily for the Console interface, HELP with no topic number
lists the available Help topics (documents).

Typing HELP followed by the number of a topic from the list causes that
Help document to be opened in Adobe Reader.

GUI-mode users will find the HELP button more useful, and it accesses
the same documents.

HEX$ (function) HEX$ (num-expr [, fill])

Converts a number to its hexadecimal equivalent, and places it in a string.
Range is that of a long integer (-2147483648 < x < 4294967295).

New: There is an optional numeric second parameter fill.
fill= -1: (no padding-default). Length is variable: “B20”
fill=0: left-fill the number with zeros. Length is 8 chars:

“00000B20”
fill=1: (blank padding). Length is 8: “ B20”
fill=2: (floating point). Displays the internal floating-point

representation of the number. Length is 16.
 Note: This function is for DOUBLE values. If you want to

look at the internal representation of LONGMATH numbers,
use the DEBUGPRINT statement.

For fill = -1, 0 and 1, the number is first converted to an integer, as

in FIX (), and then into hex. For Fill=2, the internal
floating-point representation (DOUBLE) is used. The
argument may be a constant or an expression. If the
argument is a LONGMATH number, it will be converted into
a DOUBLE, if possible.

Note: The string produced by HEX$ (number, 2) can be converted back

into a DOUBLE by preceding the string with "0x" and assigning it to
a DOUBLE variable or using it in a numeric expression, e.g.

a = "0x" + HEX$ (b, 2).

HEXCONVERT (function) HEXCONVERT (num-expr)

Converts the num-expr to LONGMATH, and then into a long hex string (up
to floating_pt_length digits to the right of the decimal point). If
the resulting length is <= 255, the result may be assigned to a
string variable or used anywhere a string is allowed. If it is longer,
it will be truncated (in the fractional part) to 255, or it may be
assigned to a string array, similar to the way it is done with
LONGMATH numbers.

HEXCONVERT (string-expr | string-array)
Converts the string-expr or string array into a LONGMATH number,

which can be used in a numeric expression. Precision is
determined by floating_pt_length. It can be assigned to a DOUBLE
variable if it is within the range of a DOUBLE.

Note: HEXCONVERT does not require integers. Data to the right of the

decimal point is also converted (up to the floating_pt_length).

See “Number Representation and Conversion” for more information on

this function.

HOUSECLEAN (command) HOUSECLEAN

Re-organizes the string storage and frees unused string space. Also frees
LONGMATH variables released by ERASE.

Housekeeping is (will be) done automatically if the string storage fills up.
Note: A large block of storage (equal to the string storage space) must be

available in order to re-organize the string storage. This function
will fail if the memory cannot be allocated.

IF (statement) IF expression THEN clause [ELSE clause]

IF expression GOTO stmt-num [ELSE clause]
IF expression ELSE clause
Entire IF statement must be on one line.
Complete WHILE and FOR loops may be part of an IF clause (if you can fit

them all onto one line).
No commas between items.
IF statements may be nested. The inner statement may need an ELSE to

avoid confusion with the outer statement. If there is no outer ELSE
clause, follow the inner ELSE with a colon.

Note: IF expression stmt-num is not allowed.

INCLUDE (statement) INCLUDE file-spec

Includes the program specified by file-spec in the current program
following the current statement line. This is done before the
program is run.

file-spec (the file specification) must be a string. If the file-spec contains a
colon, backslash(es) or embedded blanks, it must be in quotes –
(see “Strings”). You may use any file specification that works.
If the path is in quotes, you must use a double backslash (\\)
wherever a backslash is desired. (Don’t use ..\). If a complete
path is not specified, the file-spec is appended to the path from
which the original program was loaded.

This function is useful if you have a collection of definitions, DATA

statements or array dimensions that are used in many different
programs. Simply group the statements together as a program and
then INCLUDE them.

Note: The result of the inclusion must be syntactically correct. No
duplicates (statement numbers, functions or array definitions). The
updated program must fit in the space allocated to load programs
as set in the “Customize” dialog.

Note: The INCLUDE statement may appear anywhere in the program. It
does not get executed at run time. If the INCLUDE statement is at
the end of the program, it is the same as an APPEND statement.

Note: An included program may include or append another program, if
desired (see APPEND). Be careful to avoid a recursive loop of
INCLUDEs (program loads itself).

INKEY$ (function) INKEY$ [no parameters]

Waits for the user to type a keystroke and returns that character as a 1-
character long string. The character must be a printable character
(not a function key or scroll key.) A carriage return [ENTER] is not
required. The BASIC program is suspended until the user types a
character, although the graph window may still be controlled with
the mouse.

This function differs slightly from the IBM BASIC version, since

Windows ignores all keystrokes before the function is called,
therefore you can’t test to see if a key has been pressed; you just
have to wait for it.

Note: If you want to test if a key is pressed when a graph is

active, you can use the CHECKMOUSECLICK function (see
“Advanced Graphics”)

The TAB key and the four arrow keys have special functions when a graph

is active and the graph window has the focus. These keys are not
passed back to INKEY$. In the main QuickCalc window, the
keystrokes are also ignored when doing INKEY$.

You can break out of an INKEY$ loop by clicking STEP and then typing the

character that the program is waiting for.

INPUT (statement) INPUT [;][“prompt”;] variable [,variable …]
The first optional semicolon indicates no c/r will be printed after the data

is entered (GUI mode only).
“prompt” is a constant string.
Second semicolon may be replaced with a comma. In Console mode, the

comma means don’t follow the prompt with a question mark.
In GUI mode, data is entered in the command window, which is labeled

“Data:” and turns pink when data is requested.
Data values must be separated by commas, and must agree in number and

type with the variable list. Constants only – no expressions or
variables.

Number strings may be assigned to string variables. Number strings will
be converted, if possible, to match the destination variable.

See “Introduction” and DATA (above) for format of string data values.
This version: values are assigned to variables as they are read. If an error

occurs, “?Redo from Start” is printed, variables will be over-
written with the new values.

Note: Also, see INPUTDIALOG.

INPUT (function) INPUT (file-num).

Tests for end-of-file before doing an INPUT # in order to avoid "End-of-
File" errors.

Tests if a message is ready to be read (for SERIAL files). It returns 1 if a
message is ready, 0 if not.

File-num represents a file which is open for INPUT, RANDOM or SERIAL.
It is a numeric expression which will be truncated to an integer.

End-of-file is determined when no more data is left, after skipping over
blanks, c/r, or l-f, OR when the end of a random-access file buffer
is reached.

This function differs from EOF (file-num) in that it returns 0 for "no more
data" (eof), and if we are not out of data, it returns the next data
item type:

1 = string
2 = number
3 = invalid type

Type 3 may only be read using LINE INPUT.
Note: If the next operation you plan to do is a LINE INPUT #, you should

use EOF (file-num, "LINE") instead of INPUT (file-num), since the
INPUT function will skip over blanks and zero-length records
which you may want to read.

INPUT # (statement) INPUT # file-num, list-of-variables

file_num represents a file which is open for INPUT or SERIAL It may be
followed by a comma or semicolon.

list-of-variables is the same as for INPUT (See INPUT). If a mismatch or
EOF error occurs, the program will be terminated.

If file-num refers to a RANDOM file, data is read from the buffer filled by
the last GET from that file. INPUT # may not attempt to read
beyond the end of the buffer.

If file-num refers to a SERIAL file, extra variables or extra data items will
be ignored (see “Working with Files”).

Note: you can use the EOF () or INPUT () functions to test for end-of-
file before reading.

Note: you can use the INPUT () function to see if a SERIAL message is
ready before reading, to avoid time-out errors.

INPUT % (statement) INPUT % string_expr; list-of-variables

string_expr is a string containing data that you wish to read from.
list-of-variables is the same as for INPUT (See INPUT). If a mismatch

occurs, the program will be terminated.
This function takes a string and reads data from it as if it were a file

buffer.
There is no error condition for too many or too few data items for the

number of variables in the list. Unused variables will not be
changed (you should preset variables to default values.) Extra data
items will be ignored. Subsequent INPUT % statements will start
again at the beginning of the string.

You can use this function to extract data from a string you generated, read,
or calculated. You can also use it to parse a string read by LINE
INPUT in more than one way.

INPUTDIALOG (statement) INPUTDIALOG [title ;] variable-name-1, variable-name-2, …

Displays a dialog box allowing you to input the desired variables.
title (optional) The title or caption for the dialog box. Default is “Enter

Data”. must be a string constant (in quotes) or variable. If used, it
must be followed by a semicolon.

variable-name-1, variable-name-2, … is the list of variables to input
(maximum of six).

Note: There is no return code. If the user clicks “OK” or ENTER, the
values are saved. If you click the [X] or press ESC, the program is
terminated.

See the document “Advanced Features of QuickCalc” for more
information.

Also, see UPDATEDIALOG.

INPUTDIALOG (function) rc = INPUTDIALOG ([title,] string-array)

title (same as for the statement form, above). Follow it with a comma.

string-array Specifies the name of the string array, (usually dimensioned

(n, 5), which a one- or two-dimensional array containing the data
to define the dialog box and the variables you want to enter.

Format of each row of the string array:

variable-name, prompt, row, start-column, width

variable-name is the name of the variable to receive the

data, or a number (1-99) to define a button.
prompt is the text to display above each edit field or on the

button.
row is the row (0-5) in the dialog where this field appears.
start-column is a percentage (0-95) of the dialog width.
width is the width of the edit field or button, as a

percentage (5 to 100) of the dialog width.

Return code is 0 of user clicked “OK” or pressed ENTER, -1 if user
“cancelled” (clicked the [X] or pressed ESC), or the number of the
user-defined button.

See the document “Advanced Features of QuickCalc” for more
information.
Also, see UPDATEDIALOG.

INSTR (function) INSTR ([n],x$, y$)

Searches for the first occurrence of string y$ in x$ and returns the position
at which the match is found. The optional offset n sets the position
for starting the search in x$.

n is a numeric expression from 1 to 255.
If y$ is not found in x$, INSTR returns 0.
If n > LEN (x$) or x$ is NULL, INSTR returns 0.
If y$ is NULL, INSTR returns n (or 1 if n is not specified.)

INT (function) INT (num-expr)
Largest integer less than or equal to x. (“floor” function).
Positive numbers are truncated at the decimal point.
Negative numbers which are not integers are moved “down” (more

negative) to the next integer.
(Also, see CINT and FIX.)

INTEGER (statement) INTEGER

Sets LONGMATH calculations to Integer mode.
Does not change the format of any existing LONGMATH numbers.
See “Working with Long Numbers” for the differences between Integer

and Floating Point mode.

LEFT$ (function) LEFT$ (x$, n)
Returns the leftmost n characters of x$.
x$ is a string expression.
n is a numeric expression from 0 to 255, and specifies the maximum

number of characters in the result.

LEN (function) LEN (string-expr | string array)
Returns the number of characters in the string or string array.

LINE INPUT (statement) LINE INPUT [;] [“prompt”;] string-var.

Reads an entire line (up to 255 characters) from the keyboard into a string
variable. All characters are read, including trailing blanks and
delimiters.

The first semicolon (optional) means don’t start new line after typing input
(GUI mode only).

Trailing blanks are removed.
Input is terminated when [enter] is pressed. Position of cursor when [enter]

is pressed is unimportant – all characters on the line are entered.

LINE INPUT # (statement) LINE INPUT #file-num, string-var.

Reads an entire line from the file or RANDOM file buffer (maximum length
is 255 characters) into a string variable. The line is not interpreted
or broken into fields, but is read exactly as it was in the file.

Carriage-returns and line-feeds are removed from the end of the
record.

For SERIAL files, it reads the entire message from the SERIAL file buffer.
Escape sequences are not converted.
If a line has been partially read by a previous INPUT # statement, the

remainder of the line will be read in this statement.
If the remainder of the line (or RANDOM file buffer) is longer than 255

characters, the next 255 are taken and the rest of the line is
available to be read by subsequent LINE INPUT # or INPUT #
statements.

Note: you can use the EOF () function to test for end-of-file before
reading and avoid “end-of-file” errors.

Note: For SERIAL files, you can use the INPUT () function to test is a
message is ready to read, to avoid time-out errors.

LIST (command) LIST

Lists entire program on screen. (Not for editing).
For debugging, also lists hex offset within program and statement number

and DATA statement tables.
Note: This function is not needed simply to list or print your program.

You can do that from within Notepad.

LOAD (command) LOAD file-spec

Loads program and checks for syntax. Does not run it (use RUN).
file-spec (the file specification) must be a string. If the file-spec contains a

colon, backslash(es) or embedded blanks, it must be in quotes –
(see “Strings”). You may use any file specification that works. If
the path is in quotes, you must use a double backslash (\\)
wherever a backslash is desired. (Don’t use ..\). If a complete path
is not specified, the file-spec is appended to the current working
directory.

You can change the current working directory from within the program

with the CHDIR statement.

This command is only needed if you wish to load and check a program

without running it. In GUI mode, it is faster to use the RUN
button.

LOG (function) LOG (num-expr)

Natural logarithm.
num-expr must be greater than zero.

LOG10 (function) LOG10 (num-expr)
(new) Common (base 10) logarithm. .
num-expr must be greater than zero.

LONG (function) LONG (num-expr | string-expr | string-array)
Converts just about anything into a LONGMATH value.
Accepts any numeric expression and assures that the result is LONGMATH.

This is useful for functions like SQR with behave differently
depending on whether their argument is DOUBLE or LONGMATH.

Also accepts string expressions and converts them, if possible, similar to
VAL, but works on long strings and numbers. For example, you
could say y = LONG ("1.5e" + STR$ (1000)).

LONG will also accept and convert the string array form of a long number
(see “Number Representation, Assignment, and Conversion”).

(statement) LONG (var-name | array-name (num_expr [, num-expr …]) [, ….]

Defines a variable to be LONGMATH, or dimensions a LONGMATH array.
Variables and arrays may be intermixed on the line.
Names must not end in $.
Variables must not have been used or referenced previously, as that

implicitly defines them as DOUBLE.
Arrays must not have been previously dimensioned (see ERASE and

CLEAR).

LONG "ALL" [OFF]
Sets [or clears] a mode where the program uses only LONGMATH

variables and does all operations and functions using long
arithmetic. (See “Using Long Numbers”). In this mode, variables
do not need to be declared as LONG.

LONGE (function) LONGE [no parameters]

Calculates and returns (LONGMATH) e, the base of the natural logarithms.
This value is calculated at the current floating-point length when it is

referenced, and saved for subsequent use. If a longer value is
requested, it will be re-calculated and saved. If a shorter or same-
length value is requested, the saved value will be used (shortened
and rounded if necessary).

LONGPI (function) LONGPI [no parameters]

Calculates and returns (LONGMATH) π.
This value is calculated at the current floating-point length when it is

referenced, and saved for subsequent use. If a longer value is
requested, it will be re-calculated and saved. If a shorter or same-
length value is requested, the saved value will be used (shortened
and rounded if necessary).

LSET (statement) LSET string-var = string-expression

string-var is the name of a variable, normally one defined in a FIELD
statement. (See FIELD statement). It may not be a string array, but
may be a string array element.

string-expression will be placed in the field (or “string variable”)

identified by string-var, typically in preparation for a PUT
statement.

If string-expression is shorter than the width specified for string-var in the

FIELD statement, LSET left-justifies the string in the field (spaces
are used to pad the extra positions). If string-expression is longer
than string-var, characters are dropped from the right.

Numeric (DOUBLE) values must be converted to strings before they are

LSET (see STR$ function). LONGMATH numbers shorter than 255
characters may be assigned to strings directly.

See “Working with Files” for more information on using RANDOM files.

While it is intended for use with field variables, LSET can also be used for

ordinary string variables. LSET differs from an assignment
statement in that the current length for the destination variable is
preserved, and the string expression is truncated or padded to fit in
that length. If the destination string variable has not been used yet,
it will have a zero length and LSET will not place anything in it.

MAKEDATETIME (function)
datetime-variable = MAKEDATETIME (month, day, year, hour, minutes,
seconds, dst). Converts the date and time specified into a DATETIME
variable.
datetime-variable= MAKEDATETIME (). Converts current date and time
into a DATETIME variable.
datetime-variable = MAKEDATETIME (datetime-array). Compresses the
DATETIME array into a DATETIME variable.

Note: See “Working With Dates and Times” for more information.

MESSAGEBOX (function) MESSAGEBOX (message-string, button-1-string [, button-2-string
[, button-3-string]]

All parameters are string expressions. If you want to display a number,

put it in quotes or use the STR$ function to convert it.

This function displays a Windows-style Message Box on the screen,
allowing you to make a selection by clicking one of the buttons. You have
control over the text displayed and the caption on each button. The
Message Box will have 1, 2 or 3 buttons, depending on the number of
parameters provided. You must have a message string and at least one
button string.

The function returns the number of the button you clicked (1 is the
leftmost button). If you click the “X” button in the upper right corner, the
function will return -1.

The BASIC program is suspended until you reply to the Message Box. If
you click the “Step” button before leaving the Message Box, the program
will enter stepping mode as soon as you click a Message box button. This
is useful if you find yourself in a program loop that keeps displaying the
Message Box. Of course, you can also click “Kill Program” which will
destroy the Message Box immediately and terminate the BASIC program.

Note: MESSAGEBOX has the same effect as printing a message to the

screen and inputting a number as a reply. It just looks better, and
is easier to code.

Note: You could precede the MESSAGEBOX function with a BEEP to

alert you that a message is requesting a response.

Note: You should keep the strings for the buttons short (typically less

than 15 characters). Strings do not wrap around on the buttons,
and text could be lost. It is best to use longer strings to ask the
question and short strings like “yes” and “no” for the buttons.

The message string will wrap, and if you want to force a new line,
you may insert the new-line character (\ n) into the string.

MID$ (function) MID$ (x$, n [, m])
 (statement) MID$ (v$, n [, m]) = y$

Function: returns the requested part of a given string.
Statement: replaces a portion of one string with another string.

x$ is a string expression.
n is a numeric expression from 1 to 255.
m is a numeric expression from 0-255.
v$ is a string variable or array element.

Returns a string of length m characters from x$ beginning with the nth

character. If m is omitted, or if fewer than m characters are to the
right of the nth character, all rightmost characters beginning with
the nth character are returned. If m = 0 or n > LEN(x), MID$ returns
a NULL string.

For the statement form, characters in v$, beginning at position n, are
replaced by the characters in y$. The optional m refers to the
characters from y$ used in the replacement. If m is omitted, all the
characters in y$ are used. If m > LEN (y$), only LEN (y$) characters
will be changed. The length of v$ does not change.

MOD (function) MOD (num-expr, num-expr)
(New). MOD (x, y) is the same as x % y.
It calculates the floating-point remainder f of x / y such that x = i * y + f,

where i is an integer, f has the same sign as x, and the absolute
value of f is less than the absolute value of y.

It works with DOUBLE and LONGMATH numbers.
y may not be zero.

NEXT (see FOR).

ON-GOSUB (statement) ON num-expr GOSUB stmt-no [, stmt-no] …

Calls the subroutine at one of several specified line numbers, depending
on the value of an expression. (see GOSUB)

num-expr must be from 0 to 255. It will be truncated to an integer.
If num-expr is 3, for example, the third statement number will be used.
If num-expr is 0 or greater than the number of statement numbers in the

list, the GOSUB will not be executed.

ON-GOTO (statement) ON num-expr GOTO stmt-no [, stmt-no] …
Transfers control (branches) to one of several specified line numbers,

depending on the value of an expression. (see GOTO)
num-expr must be from 0 to 255. It will be truncated to an integer.
If num-expr is 3, for example, the third statement number will be used.
If num-expr is 0 or greater than the number of statement numbers in the

list, the GOTO will not be executed.

OPEN (statement) OPEN mode, file-number, file-spec [,recl [,baud [,parity [,stop]]]]

mode = constant: OUTPUT, INPUT, APPEND, RANDOM, or SERIAL (no
default).

 Does not need to be in quotes (for statement form).

file_number = number expression between 1 and 5. Do not use #.

file_spec = string expression: [path and] name of file to be opened. If

not absolute, it is relative to the Current Working
Directory, regardless of where the BASIC program was
loaded from.
For SERIAL files, this is the name of the COMM port,

e.g., "COM1".

recl = number expression:
record length [required] for random files.
cutoff length for sequential output file records, max record

length for sequential input file records. Default is
514. The length includes the terminating c/r and l-f
symbols.

For SERIAL files, it is the buffer size, or the longest record
to send or receive.

baud= number expression: for SERIAL files, the baud rate for

transmitting/receiving. Default is 9600.

parity= string expression: for SERIAL files, the desired type of

parity checking. Valid settings are: "NO", "ODD",
"EVEN", "MARK" or "SPACE". Default is "NO".

stop = number expression: FOR SERIAL files, the number of

stop bits used following each character. Valid values are 1,
1.5, and 2. Default is 1.

 (function) Same parameters as OPEN statement.

mode must be a quoted string constant.
Returns 0 if successful, <0 if error occurs.
Error Codes:

-1 = Invalid mode for Open
-2 = Invalid file number for OPEN
-3 = File number is in use
-4 = Could not allocate buffer for file
-5 = OPEN file failed

Does not print error messages for file open.
Does print error messages if parameters are incorrect.
Note: Do not skip parameters by using successive commas. This will

cause an error. You can leave off parameters from the end of the
list and accept the defaults.

PLOT (statement) PLOT [parameter [, parameter [, …]]]

A PLOT statement that doesn’t specify a point, or includes a parameter
other then X= and Y= will begin a new plot.

Optional parameters are:
LINEWEIGHT=num-expr line thickness, in points
COLOR=[(r, g, b) | num-expr] (num-expr’s)r = red color (0-255),
 g = green color, b = blue color
SORTEDX sort points by x-value (default)
SORTEDY sort points by y-value
UNSORTED do not sort points
AVERAGE=num-expr moves points closer (0-10) to their

average
SMOOTH=num-expr smoothes (0-10) the plot using

Bezier curves.
X=num-expr x-coordinate of point to plot
Y=num-expr y-coordinate of point to plot

(See the document “Intermediate Graphics” for more information)

PRINT (statement) PRINT [list-of-expressions] [;]

Prints to the screen.
Items (expressions) to be printed must be separated by comma or

semicolon (not a space).
Print zones default to 14 chars (the value in the constant

DEFAULTPRINTTABS). You can override this by setting a value in a
variable PRINTTABS. Set PRINTTABS to 0 to revert back to the
default.

Numbers will always be printed with a trailing space.
Numbers are formatted using the string DEFAULTPRINTFORMAT$$, which

has the value “%13.6g” (c-type).
You can override this by setting a string into a variable PRINTFORMAT$$.

It may be a c-type, basic-type (e.g., “####.##”), the string “max”
or “ENGxxx”. This same format specification is also used in the
STR$ function. You can also override it using the PRINT USING
statement. See “Number Formatting”, in the Introduction.

TAB is implemented, but SPC is not (use SPACE$ instead)
Number strings are printed the same as character strings (left-justified).
If the list of expressions ends in a semicolon, the next print statement will

begin where this one left off (no new line, unless the line was full).
You can also use ? as a shortcut for PRINT.

PRINT # (statement) PRINT #file-num; [list of expressions][;]

Works the same as PRINT, except prints to a file, random-access file buffer
or SERIAL port.

file-num is a numeric expression.
file-num must refer to an open file, opened for OUTPUT, APPEND, RANDOM

or SERIAL.
file-num must be followed by ; (or comma) if items follow
If file-num refers to a RANDOM file, data is written to the buffer in

preparation for a PUT to that file. PRINT # may not attempt to
write beyond the end of the buffer. If the list of expressions does
not end in a semicolon, the remainder of the buffer is padded with
blanks. If you do a second PRINT # or WRITE # to the buffer, it will
over-write the first, unless the first list-of-expressions ended in a
semicolon. If you want to clear the buffer, just execute a PRINT #
statement with no parameters.

If file-num refers to a SERIAL file, a complete message is written to the
serial port. If the statement ends with a semi-colon, you must issue
another PRINT # or WRITE # to complete the line. Writing beyond
the buffer length will cause an error.

PRINT % (statement) PRINT % string-var; [list of expressions][;]

 Similar to the PRINT statement, except that the output goes to a string

variable.

Some differences are:

If a line terminates with a semicolon, data will be placed in the
destination string, but will also be retained in the buffer for
subsequent PRINT% or WRITE%.

The maximum line length is 255 characters. If a data item will not
fit on the remainder of the line, it will not be copied into the
string, nor will any subsequent items in the list. If the first
item is a LONGMATH variable, and is longer than 255, only
the first 255 characters will be printed. The data will not
wrap around or continue to the next line – (there is no next
line). You should stay within the 255-character limit.

If a TAB () references a column previous to the current print
position, it will not skip to the next line (there is no next
line). The string will be terminated at that point.

PRINT % is useful for formatting strings, particularly those that are going

to be used later in reports or graph TEXT statements.

Note: PRINT% and WRITE% statements may be intermixed to create a

string. Use the semicolon at the end of the list to show that the list
is continued in the next statement.

Note: PRINT% statements may also use the USING parameter, e.g.,

PRINT% abc$; USING "format-spec"; list-of-items. Different
PRINT% statements may use different format specifications.

Note: There are other ways to format strings, including string

concatenation (+), MID$, LSET and RSET with FIELD statements,
STR$, STRING$, SPACE$, FORMATDATETIME$, HEX$,
HEXCONVERT, DATE$, TIME$, etc. You may use all these tools to
get the formatting you like, or stick with the functions with which
you are most comfortable.

PRINT USING (statement) PRINT USING v$; [list of expressions][;]

Works exactly like the PRINT statement except it uses an over-riding
format string for numbers. See “Number Formatting”, in the
Introduction.

v$ is a format string (c-type or basic-type), “ENGxxx” or “max”, which is
used to format numbers instead of the default or override format
strings. There is a special format string for LONGMATH numbers
(see “Working With Long Numbers”).

v$ must be followed by a semicolon.
No formatting of string items.

PRINT # USING (statement) PRINT #file-num; USING v$; [list of expressions][;]

Works the same as in PRINT and PRINT USING.

PRINT % USING (statement) PRINT % string-var; USING v$; [list of expressions][;]

Works the same as in PRINT % and PRINT USING.

PRINTALL (statement) PRINTALL [what]

(New). Lists the current values of all data items.
Only non-zero numeric values or non-null strings are printed.
what is an optional parameter:

VARIABLES prints only simple variables,
ARRAYS prints only array items,
MEMORY prints a summary of memory usage.
RESERVED lists all the reserved words (functions, statements,

etc.), which cannot be used as variable names.
Note: PRINTALL can generate a lot of output, so it is best to use it with

the log file opened.

PROGRAMDIR$ (function) PROGRAMDIR$ [no parameters]
Returns a string containing the directory from which the BASIC program

was loaded. This is the directory which will be used as the default
for APPEND, INCLUDE and CHAIN statements.

This string may be saved and used later in a CHDIR statement, if desired,
or used to construct a path for opening files.

Note: If this function is used from the command line when a BASIC
program is not running, it will return the directory from which
QUICKCALC was loaded.

PUT (statement) PUT #file-num [, record-number]

Writes data in the random-access file buffer to the file at record-number.
record-number is relative to 1. If record-number is omitted, the next

record number following the last PUT is used.
If you write to a record number which is beyond the end of the file, the file

size is increased up to and including the specified record. The
contents of the intervening records is undefined.

Following the PUT, the data remains in the buffer so that it can be PUT to
another record number, if desired. The pointer is reset so that
PRINT # and WRITE # will begin writing at the beginning of the
buffer.

If you do a second PRINT # or WRITE # to the buffer, it will over-write the
first, unless the first list-of-exoressions ended in a semicolon. If
you want to clear the buffer, just execute a PRINT # statement with
no parameters.

RADIANS (statement) RADIANS

New. Causes all subsequent Trig functions to assume the angle is given or
required in radians. This is the default. This remains in effect
until a DEGREES statement is given.

RANDOMIZE (statement) RANDOMIZE num-expr

RANDOMIZE TIMER
Seeds the random-number generator.
num_expr may be any positive number >= 1 and <= 4294967295.
Only the integer portion of num_expr is used.
The resulting pseudo-random sequence generated by calls to the RND

function will generate the same sequence if the same value is used
for RANDOMIZE.

If RANDOMIZE is not called, it is the same as if you coded RANDOMIZE 1.
If you use RANDOMIZE TIMER, a different value, based on the sysyem

clock, will be used each time you run the program.

READ (statement) READ variable [, variable…]

Reads values from DATA statements and assigns them to variables. (See
DATA, RESTORE and INPUT).

Numbers may be read into DOUBLE or LONGMATH variables, provided
they are within the proper range.

Just about anything, including numbers, can be read into string variables,
as follows:

Quoted strings may use \", \r and \n to insert quote, c/r and new-line into
the string.

Unquoted strings will have blanks and tab characters stripped off front and
back when they are read, and may not contain commas, colons,
quotes, // or embedded escape sequences (\", \n or \r). They may
not start with a digit, sign, or decimal point (i.e., must not be
confused with a number). Colon, comma, end-of-line and
comment (//) will terminate the un-quoted string.

 (function) New. Examines the DATA statement(s) and checks for out-of-data. Can be

used to avoid “Out of data” errors and determine what type of data
is coming up.

Returns:
 0 if at end-of-data,
 1 if next data item is a string,
 2 if next data item is a number.

The parameter is unimportant, so code: type=READ (0).

REM (statement) REM comments

Ignores the remainder if the line.
You may also use // instead of REM.

REMAINDER (function) REMAINDER [no parameters]
Returns the remainder following an Integer-mode LONGMATH division.
The remainder is saved, following the divide, so that you don’t have to do

the divide twice in order to get both the quotient and remainder.

There is no remainder for floating-point division.
See FLOAT and INTEGER statements.

RESTORE (statement) RESTORE [statement-num]

Allows DATA statements to be re-read from a specified line.
If statement-num is given, it must refer to a line containing a DATA

statement. Otherwise, the first DATA statement in the program is
used.

If there are more than one DATA statements on that line, it refers to the
first one.

RETURN (statement) RETURN [expression]

Returns from a subroutine (see GOSUB).
expression is a numeric or string value to be returned from the subroutine.

If no return value is supplied, zero is returned. This return value is
used when the subroutine is called with a user-defined function
(var = FNxxx (…)) is called, and provides the value to assign to
var. The return value is ignored for ordinary GOSUB calls.

RIGHT$ (function) RIGHT$ (x$, n)

Returns the rightmost n characters of string x$.
x$ is a string expression.
n is an numeric expression that specifies the number of characters to be in

the result.
If n is greater than or equal to LEN (x$), then x$ is returned. If n is zero,

the NULL string is returned.

RND (function) RND (num_expr)

Returns a [pseudo-] random number >= 0 and < 1.
Values returned are type DOUBLE.
The same sequence of “random” numbers is generated each time the

program is run unless the random number generator is re-seeded
(see RANDOMIZE statement).

If num-expr is positive, RND returns the next random number in the
sequence.

If num-expr is zero, it repeats the last number generated.
If num-expr is negative, the random number generator is re-seeded. This

is the same as calling RANDOMIZE with ABS (num-expr). Then the
next random number is returned. | num-expr | must be >= 1 and <=
4294967295.

To get random integers in the range 0 through n, use INT (RND (1)*(n+1)).

ROOT (function) ROOT (x ,y)

Calculates the yth root of x. Same as x^(1/y), but has more precision for
LONGMATH numbers. Calculated as EXP (LOG(x)/y). If x is
negative, y must be an odd integer, e.g., ROOT (-8, 3) = -2. y
cannot be zero unless x is also 0.

Notes:
ROOT (0, 0) = 1
ROOT (0, n) = 0
ROOT (x, 0) is an error.
ROOT (neg-number, y) is an error unless y is an odd integer.

RSET (statement) RSET string-var = string-expression

string-var is the name of a variable, normally one defined in a FIELD
statement. (See FIELD statement). It may not be a string array, but
it may be a string array element.

string-expression will be placed in the field (or “string variable”)

identified by string-var, typically in preparation for a PUT
statement.

If string-expression is shorter than the width specified for string-var in the

FIELD statement, RSET right-justifies the string in the field (spaces
are used to pad the extra positions). If string-expression is longer
than string-var, characters are dropped from the right.

Numeric (DOUBLE) values must be converted to strings before they are

RSET (see STR$ function). LONGMATH numbers shorter than 255
characters may be assigned to strings directly.

See “Working with Files” for more information on using RANDOM files.

While it is intended for use with field variables, RSET can also be used for

ordinary string variables. RSET differs from an assignment
statement in that the current length for the destination variable is
preserved, and the string expression is truncated or padded to fit in
that length. If the destination string variable has not been used yet,
it will have a zero length and RSET will not place anything in it.

RUN (command) RUN [file-spec]

Begins the execution of a program.
RUN by itself runs the currently-loaded program, if possible.
RUN file-spec loads and runs the program.
file-spec (the file specification) must be a string. If the file-spec contains

a colon, backslash(es) or embedded blanks, it must be in quotes –
(see “Strings”) You may use any file specification that works. If
the path is in quotes, you must use a double backslash (\\)
wherever a backslash is desired. (Don’t use ..\). If a complete path
is not specified, the file-spec is appended to the current working
directory.

Note: The RUN command is only valid from the command line. You
cannot use it in a program. If you want your program to run
another program, use the CHAIN statement instead.

Note: In GUI mode, it is faster to use the RUN button.

Note: The RUN button always loads a new copy of the program each

time.

Note: If you have edited the program file, make sure you Save it before

RUNning again, or you will re-run the old file.

SELECT (function) SELECT (message-string, array-name [, max-entries])

Displays a dialog box allowing you to select items from an array.
Returns the subscript (relative to 0) of the selected item, or -1 if no

selection was made.
message-string is a string expression or constant to be displayed at the top

of the dialog, e.g., “Please select your preference…”. It may
contain up to 3 lines (separated by \n in the string).

array-name is the array containing the items from which you want to

select.
The array must be a one-dimensional string array.
Just specify the name of the array – no subscripts.

max-entries [optional] is a numeric expression which limits the number of
items displayed in the selection list, in case you don’t want to use
the entire array. The first non-null max-entries in the array will be
displayed.

Note: If you double-click on an item, it will select that item and return

immediately (no need to click the OK button).

Note: Only strings which are not null will be displayed.

Note: The contents of the array are not sorted before they are displayed.

It is assumed that you have the array in the order you want the
items to appear. If you want it sorted, first sort the array using the
SORT statement.

SETCOLOR (function) SETCOLOR (r, g, b) Creates a color value for use with SHAPE

LINECOLOR, SHAPE FILLCOLOR, TEXT COLOR, PLOT COLOR,
GRAPH BGCOLOR and GRAPH GRIDCOLOR.

Example: blue=SETCOLOR (0, 0, 255)
 TEXT COLOR=blue, …

This provides a simpler way of setting colors in graphics statements. You
only have to define the color once, and can use it wherever a color
specification is required, instead of having to code (r, g, b) in each
statement.

You may also include the file standard_colors.txt or basic_colors.txt,
which contain many pre-defined color values. (See the website sample
programs page),

Note: Be sure not to use the color variable name somewhere else in your

program as an ordinary variable.

(See “Intermediate Graphics” for more information)

SETDSTRULES (statement) SETDSTRULES rules-array

Sets a new Daylight Saving Time rule based on the values in the
array.
The array must have 12 elements per row.
Changes remain in effect until a new BASIC program is run.
(See “Working with Dates and Times” for details)

SETDSTRULES "ON" | "OFF" [quotes are required]
"ON" allows DST rules to be applied (default),
"OFF" keeps everything in standard time.

SETTIMEZONE (statement) SETTIMEZONE time-zone-bias
Sets the current time zone (for DATETIME calculations).
The offset, time-zone-bias, is given in minutes and is negative for West

of GMT, e.g., Pacific Standard time is -8 * 60 = - 480 minutes.
Eastern time is -5 * 60 = -300 minutes.

Changes remain in effect until a new BASIC program is run.
(See “Working with Dates and Times” for details)

SGN (function) SGN (num-expr)
Returns the sign of a numeric expression.
Returns 1 if num-expr is positive, 0 if num-expr is zero, and –1 if num-

expr is negative.

SHAPE (statement) SHAPE [descriptive-parameter][, …] [,shape-drawing-parameter] [, …]

Draws filled or open shapes on the graph.

Note: See the document “Intermediate Graphics” for more detailed

information on the SHAPE stapement.

Descriptive Parameters:

Parameters which set the way figures are drawn:

AVERAGE = num-expr Causes points in a shape to be

averaged (move nearer to the value
of adjacent points). 0 = no averaging,
10 = maximum.

LINEWEIGHT = num-expr Thickness of outlining line (in
points). Default is 1 point.

LINECOLOR = [(r,g,b) | num-expr]. Color of outlining line
(default=black)

FILLTYPE = [SOLID | HATCH | NONE]
Specifies how the figure is to be
filled.

FILLCOLOR = [(r,g,b) | num-expr] Color used for SOLID fills.

HATCH = [HORIZONTAL | VERTICAL | CROSS | RIGHT |

LEFT | DIAGCROSS]
Hatch pattern used for HATCH fills.

SMOOTH = num-expr Smoothes the figure using Bezier
curves. 0 = no smoothing, 10 =
maximum.

MOUSECLICK Allows this shape to be selected by

clicking on it (see “Advanced
Graphics).

These set the size, location, angle, and/or endpoints of the figure:

LEFT = num-expr Left side of bounding rectangle
RIGHT = num-expr Right side of bounding rectangle
TOP = num-expr Top of bounding rectangle
BOTTOM = num-expr Bottom of bounding rectangle

CENTER = (x,y) The center point (x,y) of the figure,

or the center of the defining ellipse
for ARC, CHORD and PIE.

RADIUS=num-expr Radius of the circle (or defining

circle for ARC, CHORD and PIE) or
the distance from the center to any
edge of a square. Forces the figure to
be square or circular.

HRADIUS = num-expr Sets the horizontal radius for an

ellipse (or defining ellipse for ARC,
CHORD, and PIE) or distance from

the center to the right or left edge of
a rectangle.

VRADIUS = num=expr Sets the vertical radius for an ellipse

(or defining ellipse for ARC, CHORD,
and PIE) or distance from the center
to the top or bottom edge of a
rectangle.

LINESTART=(x, y) Specifies the starting point of a line.
LINEEND=(x, y) Specifies the end point of a line.
CTLPT1=(x, y) Specifies the first control point for a

BEZIER curve.
CTLPT2=(x, y) Specifies the second control point for

a BEZIER curve.

STARTANGLE=num-expr Specifies the starting angle for a

CHORD, ARC or PIE. The figure is
drawn counter-clockwise from the
STARTANGLE to the ENDANGLE.
Zero represents “directly to the right
of the center point”.

Note: Angles are given in radians

(unless DEGREES is in effect)
and must be between 0 and
360 degrees (0 and 2�
radians).

ENDANGLE=num-expr Specifies the ending angle for ARC,

CHORD and PIE.

ROTATE=num-expr Specifies the angle to rotate TEXT

shapes.
ROTATECENTER=[(x,y) | "center"] Specifies the coordinates of the

center of rotation, or if "center", to
rotate around the center of the figure.

POLYPOINTS=array-name Specifies the name of the array

containing the points for a polygon
or polyline. The array must be
dimensioned with DIM array-name
(n,2), where n is greater than or
equal to the number of points in the
polygon or polyline. array-name
(n,0) is the x-coordinate and array-
name (n,1) is the y-coordinate. n is 0

for the first point. Don’t specify the
first point again at the end for a
polygon.

 The POLYPOINTS array is also used

with CHAROUTLINE and
PLOTCHAROUTLINE.

POLYCOUNT=num-expr Number of points in the polygon or

polylines array (not counting the last
point for polygons, which is the
assumed to be the same as the start
point).

CHARACTERS = string-expr String of characters to be used in a

SHAPE TEXT.

FONT = string-expr Name of the font to be used for the

SHAPE TEXT function. Default is a
generic sans-serif font

BOLD = num-expr Weight (from 0 to 1000) of the font

used in the SHAPE TEXT function.

ITALIC = num-expr Normal or italic for the font used in

the SHAPE TEXT function. Default is
0 (= normal), 1 =itallic.

DIRECTION=[normal | reverse] Specifies the direction to draw

figures: normal = counter-clockwise,
reverse = clockwise.

RESET Resets all the descriptive parameters

to their default or initial values.

Shape Drawing Parameters:

RECTANGLE Draws a rectangle (or square)

ELLIPSE Draws an ellipse (or circle)

ARC Draws an arc from STARTANGLE to

ENDANGLE. The arc is not filled.

CHORD Draws a chord from STARTANGLE to

ENDANGLE.

PIE Draws a pie segment from
STARTANGLE to ENDANGLE.

LINE Draws a line from LINESTART to

LINEEND.

POLYGON Draws a polygon using the points

specified in the POLYPOINTS array.
The number of points in the array is
specified in the POLYCOUNT
parameter.

POLYLINE Draws a polyline using the points

specified in the POLYPOINTS array.
The number of points in the array is
specified in the POLYCOUNT
parameter.

TEXT Draws outline text shapes.

BEZIER Draws a cubic Bezier curve from

LINESTART to LINEEND, using the
control points specified by CTLPT1
and CTLPT2 .

BEGINPATH Begins a complex connected shape.

ENDPATH Ends a complex connected shape.

CLOSEFIGURE Ends one part of a complex

connected shape, closing it up back
to its starting point. Separates
contours within the complex shape.

STROKE Outlines a complex connected shape

STROKEFILL Outlines and fills a complex

connected shape.

CHAROUTLINE Returns the outline of a font

character in the POLYPOINTS array.

PLOTCHAROUTLINE Plots the character outline in the

POLYPOINTS array returned by
CHAROUTLINE.

SHORT (function) SHORT (num_expr)

Returns a DOUBLE. If num-expr was LONGMATH it will convert it to a
DOUBLE, if possible. If the number is out of range for DOUBLEs,
an error will occor. Underflow will result in zero.

SIN (function) SIN (num-expr)

Returns the sine of an angle.
The angle is assumed to be in radians, unless the DEGREES statement is

given. (see DEGREES and RADIANS)

SORT (statement) SORT array-name (name of the array to sort)

[(index-1, index-2, …)] (use indices to sort a sub-array)
[, count=rows-to-sort] (0 [default] = sort all rows)
[, keycol1=primary-sort-column]
[, keycol2=seconday-sort-column]
[, keycol3=tertiary-sort-column]
[, DESCENDING] (sort in reverse order)
[, CASE] (sort upper & lower case differently)
[, UNSTABLE] (default is stable)

See “The SORT statement and Sorting Arrays” in the “Advanced Features
of QuickCalc” document for a detailed description of the SORT function.

SPACE$ (function) SPACE$ (num-expr)

Returns a string of num-expr spaces.

SPAWN (statement) SPAWN file-spec$ [, parameters$ [, directory$]]

Begins the execution of a target file, document, shortcut, or website. This
allows you to launch other applications from within your
QuickCalc BASIC program. Use it carefully.

All 3 parameters are string expressions. The second two are optional.
The first parameter, file-spec$, must be a valid path to a document or file.
The second (optional) parameter, parameters$, is a string containing the

parameters you wish to pass to the program.
The third parameter, directory$, is the default “working” directory for the

program. If not specified, it will be the same as the current
working directory for QuickCalc BASIC.

Note: If the parameters are quoted strings, make sure that all backslash

(\) characters are represented by double-backslashes (\ \).

Note: There is very little error reporting, other than syntax, for this

function. Check your parameters carefully.

SQR (function) SQR (num-expr)
Returns the square root of num-expr. num-expr must be >= 0.

Note: for LONGMATH expressions, this is faster than x ^ (0.5) or ROOT (x,
2)

STARTTIMER (function) STARTTIMER [no-parameters]

Starts timing an interval.
Timing continues until an ENDTIMER function is called.
Returns 0 if timing is not supported, otherwise returns non-zero.

Note: Timing includes the time for interpreting the BASIC statements and

all system overhead that occurs between the STARTTIMER and
ENDTIMER function calls. For that reason, it is not an accurate
indication of the time required to do mathematical functions.

STEP (see FOR).

STOP (statement) STOP

Works the same as the STEP button, that is, the program enters stepping
mode (see “Debugging”). Can be used anywhere in the program.
When the program is paused, you can enter most commands and
statements. Typing <enter> alone causes the next statement to be
executed, similar to clicking STEP (see “Debugging”). Typing
CONT or clicking “Continue” will continue the program. Typing
END will terminate it.

Note: STOP is the same as DEBUG STEP.

STR$ (function) STR$ (num-expr [, format-spec])

Returns a string representation of the value in num-expr.
num-expr must be within the range of a DOUBLE, unless the special format

string for LONGMATH numbers is used (see “Working With Long
Numbers”).

format-spec is an optional second parameter, which is an over-riding print
format string (constant or expression) to be used with this
statement only.

If format-spec is not given, and printformat$$ is not NULL, it will use that
format.

If format-spec is not given, and printformat$$ is NULL, STR$ will use
"%23.16g" (16 digits, maximum) and strip off any leading blanks.

STRING$ (function) STRING$ (n, m)

STRING$ (n, string-expr)
Returns a string of length n, whose characters all have ASCII code m or

the first character of string-expr.
n and m are numeric expressions in the range of 0-255.

SWAP (statement) SWAP variable-1, variable-2

Exchanges the values of two variables. The two variables must be of the
same type.

No additional storage is required for strings and LONGMATH variables,
making it useful for sorting data.

TAB (function) TAB (n)

n is a numeric expression. Tabs to position n.
If the current print position is already beyond space n, TAB goes to

position n on the next line.
If the TAB function is at the end of a list of data items, no carriage-return

will be added, as if the TAB function had an implied semicolon
after it.

Note: Tab is only valid for PRINT [#][USING] .
It is not valid in WRITE statements.

TAN (function) TAN (num-expr)

Returns the tangent of the angle. The angle is assumed to be in radians,
unless the DEGREES statement is given. (see DEGREES and
RADIANS)

TEXT (statement) TEXT STRING=string-var [, parameter [, parameter [, …]]]

Places text or labels on your graph.

Required parameter:

STRING=string-var contains text to display

Optional parameters are:
ANGLE=string-expr1,2 Rotate text counter-clockwise (0-2π

radians or 0-360 degrees, if
DEGREES is set.

BOLD Use boldface type
BOXED1,2 draws a box around the text.
COLOR=[(r, g, b) | num-expr] r = red color (0-255),
 g = green color, b = blue color
DATASIZE=num-expr3 font height in data units.
FONT=string-expr4 font to use for this and subsequent

TEXT statements. Null string resets to
default font.

H=num-expr2 percent (left-to-right) on graph.
ITALIC Use italic type
JUSTIFY=[LEFT | CENTER | RIGHT] 1,2
NORMAL Resets BOLD and ITALIC
SIZE=num-expr3 point size (6-100 for text, 10-30 for

axis text)
V=num-expr1 percent (bottom-to-top) on graph.
X=num-expr1,2 x-coordinate (data point) for text.
XAXIS2 label the x-axis

X2=num-expr5 right side of bounding area for text.
Y=num-expr1,2 y-coordinate (data point) for text.
YAXIS1 label the y-axis
Y2=num-expr5 top side of bounding area for text.

1 (not valid with XAXIS)
2 (not valid with YAXIS)
3 (specify either SIZE or DATASIZE)
4 (FONT may appear without STRING)
5 (X and X2 define the bounding area for horizontal sliding text, Y and Y2 define the

bounding area for vertical sliding text)

(See the document “Intermediate Graphics” for more information)

THEN (see IF).

TIME$ (variable) TIME$

Returns the time in a string: “hh:mm:ss”
The time is gotten once, when the QuickCalc program starts, updated with

UPDATEDATETIME.

TO (see FOR).

TOLOWER$ (function) TOLOWER$ (string-expr)

Returns a string equal to string-expr with all the upper-case letters (capital
letters A - Z) converted to lower-case (a - z).

TOUPPER$ (function) TOUPPER$ (string-expr)

Returns a string equal to string-expr with all the lower-case letters (a - z)
converted to upper-case (capital letters A - Z).

UPDATEDATETIME (statement) UPDATEDATETIME

Updates the values in the “constants” DATE$, DAYOFWEEK$, and TIME$.
These constants will give the same values each time they are referenced,

until UPDATEDATETIME is called. This allows you to print the
same time on each page of a report. Updating the time lets you
display start and stop times on a job or show the time each part of a
long process finishes.

UPDATEDIALOG (statement) UPDATEDIALOG [title ;] variable-name-1, variable-name-2, …
UPDATEDIALOG (function) rc = UPDATEDIALOG ([title,] string-array)

UPDATEDIALOG (statement or function) is exactly the same as
INPUTDIALOG, except the edit fields are pre-loaded with the
current contents of the target variables, saving you from having
to re-type them and allowing you to change or edit them.

See the document “Advanced Features of QuickCalc” for complete
information and examples of how to use INPUTDIALOG and
UPDATEDIALOG.

UPDATEREGION (statement) UPDATEREGION left, right, top, bottom

This statement causes the selected region of the graph window to be

refreshed. It is used when the text string referenced by a TEXT
statement has changed. The graph is not automatically updated in
this case.

Note: If you updated the entire screen when only a line of text

had changed, you would notice a lot of flicker, particularly
if the text changes often, like in a time display or counter.
This statement addresses that problem.

left, right, top and bottom [numeric values in data units] define the

rectangular region to update. The actual position of the region on
the screen will be determined by the scale factors and offsets.

Only the area within the selected region will be updated, until the next

time the entire graph is updated due to scrolling, resizing, auto-
scaling, or plotting a new figure.

This statement will cause an error if a graph is not active.

USING (see PRINT).

VAL (function) VAL (string-expr)

Returns the numerical value of a string.
VAL strips blanks, tabs and line-feeds from the beginning of the argument

string and ignores num-numeric characters following the number.
If the first character(s) of sting-expr are not numeric, VAL (x$) returns 0.

If the string is empty, VAL (x$) returns 0.

The result of VAL is a numeric string, which can be assigned to a numeric

variable (DOUBLE or LONGMATH) or used in a numeric expression.
If it is assigned to a string variable or printed directly, it will be
treated as a string containing the numeric part of x$.

WEND (see WHILE).

WHILE (statement) WHILE expression

… loop statements …
WEND

If the expression is true (not zero or NULL), the loop statements execute
until the WEND statement is encountered. Control is then returned
to the WHILE statement and expression is checked again. If the
expression is still true, the process is repeated. If it is not true,
execution resumes with the statement following the WEND
statement.

WHILE – WEND loops can be nested to any level. Each WEND matches the
most recent WHILE.

You may not branch into or out of a WHILE-WEND loop. Statement
numbers are checked to prevent this.

The while loop may begin and end anywhere in compound statements and
may be contained within an IF clause.

WORKINGDIR$ (function) WORKINGDIR$ [no parameters]

Returns a string containing the current working directory. This is the
directory in which files are opened by default.

This string may be saved and used later in a CHDIR statement, if desired,
or used to construct a path for opening files.

Unless you change it, this will be the directory specified in the shortcut
that was used to load QuickCalc, or the current working directory
in effect when QuickCalc was invoked from the (console-mode)
command line.

WRITE (statement) WRITE list-of-expressions [;]

Works like PRINT, except for the following changes:
TAB() is not valid in WRITE. Tab positions are not used.
DOUBLE Numbers are printed showing up to 16 significant digits,

and an exponent if necessary (“%22.16g”).
DOUBLE Numbers do not have leading + sign and are not followed

by a blank.
Items printed are separated by commas.
Strings are enclosed in quotes.
Number strings are not enclosed in quotes.
Embedded quote, c/r or l-f in strings are substituted by escape

sequences (\", \r or \n).
LONGMATH values are printed in a special format (see “Number

Representation and Conversion”)
USING is not valid.

Note: you can mix WRITE and PRINT statements to the same line,
e.g., PRINT a, b$, c; WRITE d, e$, f (note the semicolon).

The purpose of the WRITE statement is to create a data file that can be read
using INPUT #.

WRITE # (statement) WRITE # file-num ; list-of-expressions [;]

WRITEs to a file, random-access file buffer, or SERIAL port (See WRITE
and PRINT #).

If file-num refers to a RANDOM file, data is written to the buffer in

preparation for a PUT to that file. WRITE # may not attempt to
write beyond the end of the buffer. If the list of expressions does
not end in a semicolon, the remainder of the buffer is padded with
blanks. If you do a second PRINT # or WRITE # to the buffer, it will
over-write the first, unless the first list-of-expressions ended in a
semicolon. If you want to clear the buffer, just execute a PRINT #
statement with no parameters.

Note: You cannot output a LONGMATH variable using WRITE # to a

random-access file buffer. Use PRINT # instead. The length of the
LONGMATH number must fit in the random-access file buffer.

If file-num refers to a SERIAL file, a complete message is written to the

serial port. If the statement ends with a semi-colon, you must issue
another PRINT # or WRITE # to complete the line. Writing beyond
the buffer length will cause an error.

WRITE % (statement) WRITE % string-var; [list of expressions][;]

 Similar to the WRITE statement, except that the output goes to a string

variable.

Some differences are:
If a line terminates with a semicolon, data will be placed in the

destination string, but will also be retained in the buffer for
subsequent PRINT% or WRITE%.

LONGMATH items may not be written with WRITE%. The way
LONGMATH items are formatted for WRITE only gives you
the length on the first line. Instead, assign the LONGMATH
item to a string variable (if <= 255) or a string array. Then
operate on the resulting string(s).

The maximum line length is 255 characters. If a data item will not
fit on the remainder of the line, it will not be copied into the
string, nor will any subsequent items in the list. The data
will not wrap around or continue to the next line – (there is
no next line). You should stay within the 255-character
limit.

WRITE % is useful for formatting strings, particularly those that are going

to be used later in reports or graph TEXT statements.

Note: PRINT% and WRITE% statements may be intermixed to create a
string. Use the semicolon at the end of the list to show that the list
is continued in the next statement. You may have to manually
insert a comma between items in this case.

Note: There are other ways to format strings, including string

concatenation (+), MID$, LSET and RSET with FIELD statements,
STR$, STRING$, SPACE$, FORMATDATETIME$, HEX$,
HEXCONVERT, DATE$, TIME$, etc. You may use all these tools to
get the formatting you like, or stick with the functions with which
you are most comfortable.

Copyright 2010-2015 Mark C. Hendricks

