
User-Defined Functions

You can define your own functions within your BASIC program with user-defined
functions. The format is:

 DEF function-name ([arg1 [, arg2]…]) = expression | GOSUB stmt-no

function-name is a valid variable name. This name becomes the name of the

function. function-name must be unique and may not duplicate the name
of any BASIC function, statement, command, constant or operator (see the
PRINTALL RESERVED statement), and may not be the same as any
variable or array name used in your program.

Note: Earlier versions of BASIC used the syntax DEF FNname, where the letters
“FN” were considered part of the function name. That syntax is not
required in this version, however it will still work.

There are two types of functions:

Single Expression – the function is defined as a single-line expression, exactly

like an expression you would assign to a variable (i.e., var = expression).
The expression must evaluate to a number [DOUBLE or LONGMATH],
number string, or string, and the function will return that value.

Subroutine – The function is defined as a GOSUB stmt-no statement. When the

user-defined function is executed, the subroutine at stmt-no will be called,
exactly as when using a GOSUB. The subroutine may contain any valid
BASIC statements, and must return with a RETURN statement. The
RETURN statement may specify a value to be used as the return value from
the user-defined function.

Note: When invoking the subroutine form of a user-defined function, it

must be within an expression or assigned to a variable, even if the
return value is not used – it cannot be used like a command or
statement:

DEF calculate_results (x, y) = GOSUB 1000
calculate_results (2, 4) � (invalid)
a = calculate_results (2, 4) � (valid)

The “Subroutine” form has greatly-extended power, since it can make logic
decisions, perform input/output, call other subroutines, etc. It can test
limits, check for special situations, do table lookup and print error
messages. (If the function is the object of a PRINT statement (e.g., PRINT
xxx (y)), then you should not print from within the subroutine.)

The value returned must be compatible with the type of variable it will be
assigned to or with the way the value is to be used (as a subscript, file
number, function argument, etc.)

Argument Substitution

The argument list may be empty, but the parentheses are still required. You may
have up to 5 arguments. When the function is called, you may specify no more
parameters than appear in the argument list.

The arguments specified in the DEF statement temporarily replace the actual
variables with the same name, but do not affect those variables. Constants
(number strings) supplied as parameters will be converted to numeric variables
(DOUBLE or LONGMATH) depending on the size of the number supplied. When
you are processing the function, the variable names in the arguments will refer to
the arguments rather than the real variables. If you turn DEBUG on before and
DEBUG OFF after you call the function, you can see how the argument
substitution is done.

Any argument for which there is no corresponding parameter in the calling
statement will be assumed to be zero (or NULL if it is a string), and will still
override the corresponding variables in the expression of subroutine.

You cannot assign new values to these argument variables. They are parameters,
and as such are read-only.

Keep in mind that the type (DOUBLE or LONGMATH) may be different than you
expect based on the number supplied in the parameter. If you want to assure that
a number is of a certain type, use the LONG or SHORT functions in the parameter
list or within the user function definition:

 a = xxx (LONG (2), y)
 or DEF xxx (x, y) = SQR (LONG(x) + y)

Subroutines

A subroutine which is the target of a function definition may also be called from a
GOSUB statement. Things to consider when doing this are:

There are no over-riding variables. Variables which would have been
over-ridden for a function are now normal variables which may be
assigned values. This can lead to confusion if the subroutine is used both
ways.

The return value will be calculated but ignored.

The same subroutine could be the object of two different function definitions,
which override different arguments. This could get confusing.

Nesting.

Function definitions can be nested. Expression forms of user-defined functions
may not recursively call each other (e.g., DEF aaa(x) = bbb(x): DEF bbb(x) =
aaa(x)); to do so could crash the program. Subroutine forms may do recursive
calls (but be careful!) See examples below.

To avoid crashing the program, nested user-defined functions are limited to 200
deep, after which the BASIC program will terminate with an error message.

If a function definition expression or subroutine references another user-defined
function, the inner function’s arguments are set by the outer function with values
that may have been passed to the outer function as parameters. When referencing
variables, the current values of the inner function’s arguments are searched first.
If not found there, the outer function’s arguments are searched, and then the
variables in the main program.

Thus, a subroutine or function may be referencing variables from several sources.
It is best to name your variables and arguments carefully to avoid confusion.
Variables considered “local” by the subroutine should have names not used
elsewhere in the program and not used as parameters. You should not dimension
arrays or define long numbers from within the subroutine.

LONGMATH Numbers in User-Defined Functions

Within the expression or subroutine, LONGMATH numbers may be used along
with DOUBLE numbers, just as with regular expressions. The type of numbers
used as parameters will affect the type of computation and the type of output. For
example, if you had

LONG x
DEF xx (a, b) = SQR (a / b)
y = xx (c, d) would do a DOUBLE divide and square root,
y = xx (x, d) would do a LONGMATH divide and square root,
y = xx (123, x) would do a LONGMATH divide and square root,
y = xx (SHORT (x), c) would do a DOUBLE divide and square root.

See “Number Representation, Assignment and Conversion”, section “Conversion
Examples” for more information and examples.

Trigonometric Functions

Similarly, trigonometric functions will behave differently depending on whether
DEGREES or RADIANS (default) was specified most recently. Therefore, you don’t
need to define separate functions for working with angles in degrees vs. radians.
(If you need to check which mode you are in, use the CHECKDEGREES function).

Examples:

// nested definition:

DEF tangent (xsin) = xsin / (SQR (1-xsin*xsin)) // |xsin| < 1
DEF arcsin (xsin) = ATN (tangent (xsin)) // computes arcsine
angle = arcsin (sine)

// sum of all odd numbers up to n (recursive):

DEF oddsum (n) = GOSUB 100
x = 0 // x must start at 0
PRINT oddsum (29)
END
100 IF n % 2 = 0 THEN y = oddsum (n-1): RETURN x
x = x + n
IF n >= 3 THEN y = oddsum (n - 2)
RETURN x

Uses for Hyperbolic Trig Functions, etc.

You can create user-defined function definitions for functions not provided as part of
BASIC.

Maximum: DEF max (a, b) = (a > b) * a + (b >= a) * b
Hypoteneuse: DEF hypoteneuse (a, b) = SQR (a*a + b*b)

Secant: DEF sec (x) = 1 / COS (x) // | x| < 1
Cosecant: DEF csc (x) = 1 / SIN (x) // x � 0

ArcSine:

DEF arcsin (x) = ATN (x / SQR (1 - x* x) // | x| < 1 *
ArcCosine:

DEF arccos (x) = ATN (SQR (1 - x*x) / x) // |x| � 1, x � 0
ArcSecant:

DEF arcsec (x) = arccos (1 / x) // |x| � 1, x � 0
ArcCosecant:

DEF arccsc (x) = arcsin (1 / x) // |x| > 1, x � 0

* The arcsine is actually defined for all |x| � 1, however this function
definition blows up at ±1. This is where the subroutine form of user-
defined function can help.

DEF arcsin (x) = GOSUB 1000
1000 IF ABS (x) = 1 THEN RETURN SGN (x) * ACOT (x-x)
RETURN ATN (x / SQR (1 - x* x))

(x-x creates a long or short zero, based on the type of x, and ACOT (0) is
π/2 or 90˚, depending on the degrees/radians setting.)

The above “subroutine” function works for all values of |x| � 1. It is
obvious that the same technique would work for the arccosine, and any
other function whose definition depends on the range of the argument.

Hyperbolic Sine: DEF sinh (x) = (EXP (x) – EXP (-x)) / 2
Hyperbolic Cosine: DEF cosh (x) = (EXP (x) + EXP (-x)) / 2
Hyperbolic Tangent: DEF tanh (x) = sinh (x) / cosh (x)
Hyperbolic Cotangent: DEF coth (x) = cosh (x) / sinh (x)
Hyperbolic Secant: DEF sech (x) = 1 / cosh (x)
Hyperbolic Cosecant: DEF csch (x) = 1 / sinh (x)

ArcHyperbolic Sine: DEF arcsinh (x) = LOG (x + SQR (x * x + 1))
ArcHyperbolic Cosine:

DEF arcsinh (x) = LOG (x + SQR (x * x - 1)) : // x � 1
ArcHyperbolic Tangent:

DEF arctanh (x) = (1/2) * LOG ((1 + x) / (1 - x)) : // x < 1
ArcHyperbolic Secant:

DEF arcsech (x) = LOG ((1 + SQR (1 – x * x) / x) : // 0 < x � 1
ArcHyperbolic Cosecant:

DEF arccsch (x) = LOG (1/x + SQR (1 + x * x) / ABS (x)): // x >0
ArcHyperbolic Cotangent:

DEF arccoth (x) = (1/2) * LOG ((x+1) / (x-1)) : // |x| > 1

